Skip to main content

Advertisement

Log in

High Resolution Imaging of Viscoelastic Properties of Intracranial Tumours by Multi-Frequency Magnetic Resonance Elastography

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

In recent years Magnetic Resonance Elastography (MRE) emerged into a clinically applicable imaging technique. It has been shown that MRE is capable of measuring global changes of the viscoelastic properties of cerebral tissue. The purpose of our study was to evaluate a spatially resolved three-dimensional multi-frequent MRE (3DMMRE) for assessment of the viscoelastic properties of intracranial tumours.

Methods

A total of 27 patients (63±13 years) were included. All examinations were performed on a 3.0 T scanner, using a modified phase-contrast echo planar imaging sequence. We used 7 vibration frequencies in the low acoustic range with a temporal resolution of 8 dynamics per wave cycle. Post-processing included multi-frequency dual elasto-visco (MDEV) inversion to generate high-resolution maps of the magnitude |G*| and the phase angle φ of the complex valued shear modulus.

Results

The tumour entities included in this study were: glioblastoma (n = 11), anaplastic astrocytoma (n = 3), meningioma (n = 7), cerebral metastasis (n = 5) and intracerebral abscess formation (n = 1). Primary brain tumours and cerebral metastases were not distinguishable in terms of |G*| and φ. Glioblastoma presented the largest range of |G*| values and a trend was delineable that glioblastoma were slightly softer than WHO grade III tumours. In terms of φ, meningiomas were clearly distinguishable from all other entities.

Conclusions

In this pilot study, while analysing the viscoelastic constants of various intracranial tumour entities with an improved spatial resolution, it was possible to characterize intracranial tumours by their mechanical properties. We were able to clearly delineate meningiomas from intraaxial tumours, while for the latter group an overlap remains in viscoelastic terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Essig M, Nguyen TB, Shiroishi MS, Saake M, Provenzale JM, Enterline DS, Anzalone N, Dörfler A, Rovira A, Wintermark M, Law M. Perfusion MRI: the five most frequently asked clinical questions. AJR Am J Roentgenol. 2013;201:W495–510.

    Article  PubMed  Google Scholar 

  2. Runge VM. Current technological advances in magnetic resonance with critical impact for clinical diagnosis and therapy. Invest Radiol. 2013;48:869–77.

    Article  PubMed  Google Scholar 

  3. Cha S. Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol. 2006;27:475–87.

    CAS  PubMed  Google Scholar 

  4. Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology. 2000;217:331–45.

    Article  CAS  PubMed  Google Scholar 

  5. Law M. MR spectroscopy of brain tumors. Top Magn Reson Imaging. 2004;15:291–313.

    Article  PubMed  Google Scholar 

  6. Christen T, Bolar DS, Zaharchuk G. Imaging brain oxygenation with MRI using blood oxygenation approaches: methods, validation, and clinical applications. AJNR Am J Neuroradiol. 2013;34:1113–23.

    Article  CAS  PubMed  Google Scholar 

  7. Radbruch A, Wiestler B, Kramp L, Lutz K, Bäumer P, Weiler M, Roethke M, Sahm F, Schlemmer HP, Wick W, Heiland S, Bendszus M. Differentiation of glioblastoma and primary CNS lymphomas using susceptibility weighted imaging. Eur J Radiol. 2013;82:552–6.

    Article  PubMed  Google Scholar 

  8. Tóth V, Förschler A, Hirsch NM, den Hollander J, Kooijman H, Gempt J, Ringel F, Schlegel J, Zimmer C, Preibisch C. MR-based hypoxia measures in human glioma. J Neurooncol. 2013;115:197–207.

    Article  PubMed  Google Scholar 

  9. Baldawa SS, Bele K, Menon G, George CV, Abraham M, Nair S. Susceptibility-weighted imaging: a new tool for detection of intratumoral bleeding and subarachnoid hemorrhage–report of two cases. Clin Neuroradiol. 2012;22:257–61.

    Article  CAS  PubMed  Google Scholar 

  10. Essig M, Anzalone N, Combs SE, Dorfler A, Lee SK, Picozzi P, Rovira A, Weller M, Law M. MR imaging of neoplastic central nervous system lesions: review and recommendations for current practice. AJNR Am J Neuroradiol. 2012;33:803–17.

    Article  CAS  PubMed  Google Scholar 

  11. Lin NU, Lee EQ, Aoyama H, Barani IJ, Baumert BG, Brown PD, Camidge DR, Chang SM, Dancey J, Gaspar LE. Challenges relating to solid tumour brain metastases in clinical trials, part 1: patient population, response, and progression. A report from the RANO group. Lancet Oncol. 2013;14:e396–406.

    Article  PubMed  Google Scholar 

  12. Faehndrich J, Weidauer S, Pilatus U, Oszvald A, Zanella FE, Hattingen E. Neuroradiological viewpoint on the diagnostics of space-occupying brain lesions. Clin Neuroradiol. 2011;21:123–39.

    Article  CAS  PubMed  Google Scholar 

  13. Xing Z, You RX, Li J, Liu Y, Cao DR. Differentiation of primary central nervous system lymphomas from high-grade gliomas by rCBV and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Clin Neuroradiol 2013; doi:10.1007/s00062-013-0255-5.

  14. Lee EJ, Ahn KJ, Lee EK, Lee YS, Kim DB. Potential role of advanced MRI techniques for the peritumoural region in differentiating glioblastoma multiforme and solitary metastatic lesions. Clin Radiol. 2013;68:e689–97.

    Article  CAS  PubMed  Google Scholar 

  15. Bühring U, Herrlinger U, Krings T, Thiex R, Weller M, Küker W. MRI features of primary central nervous system lymphomas at presentation. Neurology. 2001;57:393–6.

    Article  PubMed  Google Scholar 

  16. Toh CH, Wei K-C, Ng S-H, Wan Y-L, Lin C-P, Castillo M. Differentiation of brain abscesses from necrotic glioblastomas and cystic metastatic brain tumors with diffusion tensor imaging. AJNR Am J Neuroradiol. 2011;32:1646–51.

    Article  CAS  PubMed  Google Scholar 

  17. Romano A, Scheel M, Hirsch S, Braun J, Sack I. In vivo waveguide elastography of white matter tracts in the human brain. Magn Reson Med. 2012;68:1410–22.

    Article  PubMed  Google Scholar 

  18. Johnson CL, McGarry MDJ, Gharibans AA, Weaver JB, Paulsen KD, Wang H, Olivero WC, Sutton BP, Georgiadis JG. Local mechanical properties of white matter structures in the human brain. Neuroimage. 2013;79:145–52.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 1995;269:1854–7.

    Article  CAS  PubMed  Google Scholar 

  20. Muthupillai R, Ehman RL. Magnetic resonance elastography. Nat Med. 1996;2:601–3.

    Article  CAS  PubMed  Google Scholar 

  21. Sack I, Beierbach B, Wuerfel J, Klatt D, Hamhaber U, Papazoglou S, Martus P, Braun J. The impact of aging and gender on brain viscoelasticity. Neuroimage. 2009;46:652–7.

    Article  PubMed  Google Scholar 

  22. Sack I, Streitberger K-J, Krefting D, Paul F, Braun J. The influence of physiological aging and atrophy on brain viscoelastic properties in humans. PLoS ONE. 2011;6:e23451.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Streitberger KJ, Wiener E, Hoffmann J, Freimann FB, Klatt D, Braun J, Lin K, McLaughlin J, Sprung C, Klingebiel R, Sack I. In vivo viscoelastic properties of the brain in normal pressure hydrocephalus. NMR Biomed. 2011;24:385–92. doi:10.1002/nbm.1602.

    PubMed  Google Scholar 

  24. Murphy MC, Huston J, Jack CR, Glaser KJ, Manduca A, Felmlee JP, Ehman RL. Decreased brain stiffness in Alzheimer’s disease determined by magnetic resonance elastography. J Magn Reson Imaging. 2011;34:494–8.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Wuerfel J, Paul F, Beierbach B, Hamhaber U, Klatt D, Papazoglou S, Zipp F, Martus P, Braun J, Sack I. MR-elastography reveals degradation of tissue integrity in multiple sclerosis. Neuroimage. 2010;49:2520–5.

    Article  PubMed  Google Scholar 

  26. Lipp A, Trbojevic R, Paul F, Fehlner A, Hirsch S, Scheel M, Noack C, Braun J, Sack I. Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic Parkinson’s disease. NeuroImage Clin. 2013;3:381–7.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Simon M, Guo J, Papazoglou S, Scholand-Engler H, Erdmann C, Melchert U, Bonsanto M, Braun J, Petersen D, Sack I, Wuerfel J. Non-invasive characterization of intracranial tumors by magnetic resonance elastography. New J Phys. 2013;15:085024.

    Article  Google Scholar 

  28. Murphy MC, Huston J, Glaser KJ, Manduca A, Meyer FB, Lanzino G, Morris JM, Felmlee JP, Ehmann RL. Preoperative assessment of meningioma stiffness using magnetic resonance elastography. J Neurosurg. 2013;118(3):643–8.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Johnson CL, McGarry MDJ, Van Houten EEW, Weaver JB, Paulsen KD, Sutton BP, Georgiadis JG. Magnetic resonance elastography of the brain using multishot spiral readouts with self-navigated motion correction. Magn Reson Med. 2013;70:404–12.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Hirsch S, Guo J, Reiter R, Papazoglou S, Kroencke T, Braun J, Sack IMR. Elastography of the liver and the spleen using a piezoelectric driver, single-shot wave-field acquisition, and multifrequency dual parameter reconstruction. Magn Reson Med. 2014;71(1):267–77.

    Article  PubMed  Google Scholar 

  31. Baghani A, Salcudean S, Honarvar M, Sahebjavaher RS, Rohling R, Sinkus R. Travelling wave expansion: a model fitting approach to the inverse problem of elasticity reconstruction. IEEE Trans Med Imaging. 2011;30:1555–65.

    Article  PubMed  Google Scholar 

  32. Papazoglou S, Hirsch S, Braun J, Sack I. Multifrequency inversion in magnetic resonance elastography. Phys Med Biol. 2012;57:2329–46.

    Article  PubMed  Google Scholar 

  33. Guo J, Hirsch S, Fehlner A, Papazoglou S, Scheel M, Braun J, et al. Towards an elastographic atlas of brain anatomy. PLoS ONE. 2013;8:e71807.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Hirsch S, Klatt D, Freimann F, Scheel M, Braun J, Sack I. In vivo measurement of volumetric strain in the human brain induced by arterial pulsation and harmonic waves. Magn Reson Med. 2013;70:671–83.

    Article  PubMed  Google Scholar 

  35. Papazoglou S, Xu C, Hamhaber U, Siebert E, Bohner G, Klingebiel R, Braun J, Sack I. Scatter-based magnetic resonance elastography. Phys Med Biol. 2009;54:2229–41.

    Article  PubMed  Google Scholar 

  36. Braun J, Guo J, Lützkendorf R, Stadler J, Papazoglou S, Hirsch S, Sack I, Bernarding J. High-resolution mechanical imaging of the human brain by three-dimensional multifrequency magnetic resonance elastography at 7T. NeuroImage. 2014;90:308–14. doi:10.1016/j.neuroimage.2013.12.032.

    Article  PubMed  Google Scholar 

  37. Streitberger KJ, Guo J, Tzschätzsch H, Hirsch S, Fischer T, Braun J, Sack I. High-resolution mechanical imaging oft he kidney. J Biomech. 2014;47(3):639–44.

    Article  PubMed  Google Scholar 

  38. Guo J, Hirsch S, Streitberger KJ, Kamphues C, Asbach P, Braun J, Sack I. Patient-activated three-dimensional multifrequency magnetic resonance elastography for high-resolution mechanical imaging of the liver and spleen. Rofo. 2014;186(3):260–6.

    CAS  PubMed  Google Scholar 

  39. Sack I. Magnetresonanzelastographie 2.0: Hochaufgelöste Bildgebung zur Bestimmung von Elastizität, Viskosität und Druck weicher Gewebe. Dtsch Med Wochenschr. 2013;138:2426–30.

    Article  CAS  PubMed  Google Scholar 

  40. Xu L, Lin Y, Han JC, Xi ZN, Shen H, Gao PY. Magnetic resonance elastography of brain tumors: preliminary results. Acta Radiol. 2007;48:327–30.

    Article  CAS  PubMed  Google Scholar 

  41. Sack I, Jöhrens K, Würfel J, Braun J. Structure-sensitive elastography: on the viscoelastic powerlaw behavior of in vivo human tissue in health and disease. Soft Matter. 2013;9:5672–80.

    Article  CAS  Google Scholar 

  42. Basan M, Risler T, Joanny J-F, Sastre-Garau X, Prost J. Homeostatic competition drives tumor growth and metastasis nucleation. HFSP J. 2009;3:265–72.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Katira P, Bonnecaze RT, Zaman MH. Modeling the mechanics of cancer: effect of changes in cellular and extra-cellular mechanical properties. Front Oncol. 2013;3:145. doi:10.3389/fonc.2013.00145.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Fritsch A, Höckel M, Kiessling T, Nnetu KD, Wetzel F, Zink M, Käs JA. Are biomechanical changes necessary for tumour progression?. Nat Phys. 2010;6:730–2.

    Article  CAS  Google Scholar 

  45. Garteiser P, Doblas S, Daire J-L, Wagner M, Leitao H, Vilgrain V, Sinkus R, Van Beers BE. MR elastography of liver tumours: value of viscoelastic properties for tumour characterisation. Eur Radiol. 2012;22:2169–77.

    Article  PubMed  Google Scholar 

  46. Jezzard P, Clare S. Sources of distortions in functional MRI data. Hum Brain Map. 1999;8:80–5.

    Article  CAS  Google Scholar 

  47. Anderson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage. 2003;20(2):870–88.

    Article  Google Scholar 

  48. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy R, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthes PM. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23(S1):208–19.

    Article  Google Scholar 

Download references

Conflict of Interest

All authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reiss-Zimmermann MD.

Additional information

M. Reiss-Zimmermann and K.-J. Streitberger contributed equally.

Electronic supplementary material

The online version of this article (doi:10.1007/s00062-014-0311-9) contains supplementary material, which is available to authorized users.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiss-Zimmermann, M., Streitberger, KJ., Sack, I. et al. High Resolution Imaging of Viscoelastic Properties of Intracranial Tumours by Multi-Frequency Magnetic Resonance Elastography. Clin Neuroradiol 25, 371–378 (2015). https://doi.org/10.1007/s00062-014-0311-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-014-0311-9

Keywords

Navigation