Diffusion Tensor Imaging in Amyotrophic Lateral Sclerosis—Increased Sensitivity with Optimized Region-of-Interest Delineation


Abstract

Purpose

Diagnosis of amyotrophic lateral sclerosis (ALS) can be difficult from clinical symptoms alone. Diffusion tensor imaging (DTI) has been suggested as an adjunct diagnostic method. DTI parameter changes have been repeatedly demonstrated, especially in the corticospinal tract (CST) as the predominantly affected structure. However, a recent meta-analysis reported only a modest discriminatory capability, questioning the value of this method as a confirmatory test in single subjects with suspected ALS. We investigated how methodological differences in CST delineation influence the discriminatory capability.

Methods

DTI data were acquired in 13 ALS patients and an age-matched healthy control group. We calculated and compared receiver operation characteristic (ROC) curves of four different analysis methods using either a manual or an atlas-based region of interest (ROI) of the CST in combination with and without tract-based spatial statistics (TBSS).

Results

The analysis method combining atlas-based ROIs with TBSS yielded an area under the curve (AUC) of 0.936 and a sensitivity and specificity of 100 % and 91.67 %. These are the best results among the four analysis methods evaluated: manual ROIs (AUC = 0.846, sensitivity: 69.23, specificity: 91.67), atlas-based ROIs alone (AUC = 0.917, sensitivity: 76.92, specificity: 91.67), manual ROIs in combination with TBSS (AUC = 0.885, sensitivity: 76.92, specificity: 91.67).

Conclusions

Sensitivity and specificity strongly depend on the CST delineation approach. The combination of an atlas-based ROI with TBSS is a promising fully automatic method with improved discriminatory capability compared to other approaches. It could ultimately serve as a confirmatory test in single ALS patients.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Lee JR, Annegers JF, Appel SH. Prognosis of amyotrophic lateral sclerosis and the effect of referral selection. J Neurol Sci. 1995;132:207–15.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Turner MR, Scaber J, Goodfellow JA, et al. The diagnostic pathway and prognosis in bulbar-onset amyotrophic lateral sclerosis. J Neurol Sci. 2010;294:81–5.

    PubMed  Article  Google Scholar 

  3. 3.

    Shoesmith CL, Findlater K, Rowe A, et al. Prognosis of amyotrophic lateral sclerosis with respiratory onset. J Neurol Neurosurg Psychiatr. 2007;78:629–31.

    PubMed Central  PubMed  Article  Google Scholar 

  4. 4.

    Millul A, Beghi E, Logroscino G, et al. Survival of patients with amyotrophic lateral sclerosis in a population-based registry. Neuroepidemiology. 2005;25:114–9.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Leigh PN. Amyotrophic lateral sclerosis. In: Eisen AA, Shaw PJ, editors. Motor neuron disorders and related diseases. Elsevier; 2007. p. 249–78.

    Google Scholar 

  6. 6.

    Brooks BR, Miller RG, Swash M, et al. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1:293–9.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Filippi M, Agosta F, Abrahams S, et al. EFNS guidelines on the use of neuroimaging in the management of motor neuron diseases. Eur J Neurol. 2010;17:526–e20.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  8. 8.

    Agosta F, Chiò A, Cosottini M, et al. The present and the future of neuroimaging in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol. 2010;31:1769–77.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Rossi M. Classical pathology. In: Eisen AA, Shaw PJ, editors. Motor neuron disease. London: Chapman & Hall Medical; 1994. p. 307–41.

    Google Scholar 

  10. 10.

    Ince PG, Wharton SB. Cytopathology of the motor neuron. In: Eisen AA, Shaw PJ, editors. Motor neuron disorders and related diseases. Elsevier; 2007. p. 249–78.

    Google Scholar 

  11. 11.

    Foerster BR, Dwamena BA, Petrou M, et al. (2012) Diagnostic accuracy using diffusion tensor imaging in the diagnosis of ALS: a meta-analysis. Acad Radiol. 2012. http://www.ncbi.nlm.nih.gov/pubmed/22749050. Accessed 1 Aug 2012.

  12. 12.

    Wakana S, Caprihan A, Panzenboeck MM, et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage. 2007;36:630–44.

    PubMed Central  PubMed  Article  Google Scholar 

  13. 13.

    Hua K, Zhang J, Wakana S, et al. Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage. 2008;39:336–47.

    PubMed Central  PubMed  Article  Google Scholar 

  14. 14.

    Rorden C, Brett M. Stereotaxic display of brain lesions. Behav Neurol. 2000;12:191–200.

    PubMed  Article  Google Scholar 

  15. 15.

    Woolrich MW, Jbabdi S, Patenaude B, et al. Bayesian analysis of neuroimaging data in FSL. Neuroimage. 2009;45:S173–86.

    PubMed  Article  Google Scholar 

  16. 16.

    Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23 Suppl 1:S208–19.

    Article  Google Scholar 

  17. 17.

    Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17:143–55.

    PubMed  Article  Google Scholar 

  18. 18.

    Rueckert D, Sonoda LI, Hayes C, et al. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 1999;18:712–21.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Turner MR, Agosta F, Bede P, et al. Neuroimaging in amyotrophic lateral sclerosis. Biomark Med. 2012;6:319–37.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Easterbrook PJ, Berlin JA, Gopalan R, et al. Publication bias in clinical research. Lancet. 1991;337:867–72.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Vollmar C, O’Muircheartaigh J, Barker GJ, et al. Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0 T scanners. Neuroimage. 2010;51:1384–94.

    PubMed Central  PubMed  Article  Google Scholar 

  22. 22.

    Fox RJ, Sakaie K, Lee J-C, et al. A validation study of multicenter diffusion tensor imaging: reliability of fractional anisotropy and diffusivity values. AJNR Am J Neuroradiol. 2012;33:695–700.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Pagani E, Hirsch JG, Pouwels PJW, et al. Intercenter differences in diffusion tensor MRI acquisition. J Magn Reson Imaging. 2010;31:1458–68.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank all patients and healthy subjects who participated in our study. We are especially grateful to the staff of the Charité ALS outpatient department for their valuable support. S. Hirsch and I. Sack are supported by the German Research Foundation grants Sa-901/7 and Sa-901/10. Mr. Scheel is supported by the “Friedrich C. Luft” Clinical Scientist Pilot Program funded by Volkswagen Foundation and Charité Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Scheel MD.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prokscha, T., Guo, J., Hirsch, S. et al. Diffusion Tensor Imaging in Amyotrophic Lateral Sclerosis—Increased Sensitivity with Optimized Region-of-Interest Delineation
. Clin Neuroradiol 24, 37–42 (2014). https://doi.org/10.1007/s00062-013-0221-2

Download citation

Keywords

  • Amyotrophic lateral sclerosis
  • Magnetic resonance imaging
  • Diffusion-tensor imaging
  • Tract-based spatial statistics