Skip to main content

Advertisement

Log in

Bad Mood—Bad Activation?

The Influence of Emotions on the BOLD Signal During Finger Tapping

Schlechte Stimmung – schlechte Aktivierung?

Der Einfluss von Emotionen auf das BOLD-Signal während einer Fingertapping-Untersuchung

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose:

The aim of this study was to investigate the influence of the subject’s emotional state on the BOLD signal during simple finger tapping.

Material and Methods:

Twenty-nine healthy subjects participated in three functional magnetic resonance imaging (fMRI) sessions each. The sessions differed regarding emotional states, which were induced by standardized pleasant (positive condition, POS), unpleasant (negative condition, NEG), or neutral (neutral condition, NEU) pictures taken from the International Affective Picture System (IAPS) while the subjects performed a finger-tapping task (right index-to-thumb opposition). After each session, the subjects had to rate their actual mood and the pleasantness of the presented pictures. Furthermore, their state anxiety was assessed. Behavioral data were evaluated with SPSS. Functional imaging data were processed using statistical parametric mapping (SPM2) and were analyzed for main effects of emotional stimulation using an analysis of variance (ANOVA). The local maximum of interest was analyzed by a signal change analysis.

Results:

Compared to the neutral emotional state, the positive and the negative emotional states caused a reduction of signal intensity changes within the primary sensorimotor hand area during simple finger tapping. The behavioral data indicated that the unpleasant pictures had a stronger effect on the emotional state than the pleasant images. According to these data the decrease in signal intensity change was more pronounced (significant; p < 0.001) in the negative condition than in the positive condition.

Conclusion:

This study showed that the emotional state of a test person is indeed influencing fMRI results and that well-balanced subjects in a neutral mood achieve the best fMRI results.

Zusammenfassung

Ziel:

Ziel dieser Studie war, den Einfluss des Gefühlszustands eines Menschen auf das BOLD-Signal bei der Durchführung einer einfachen motorischen Aufgabe („Fingertapping“) zu untersuchen.

Material und Methodik:

Neunundzwanzig gesunde Testpersonen nahmen an jeweils drei fMRT-Sitzungen (funktionelle Magnetresonanztomographie) teil, die sich bezüglich des induzierten Gefühlszustands unterschieden. Es wurden angenehme (positive Bedingung, POS), neutrale (neutrale Bedingung, NEU) bzw. unangenehme (negative Bedingung, NEG) Bilder aus der IAPS-Datenbank (International Affective Picture System) gezeigt, während die Probanden Fingertapping als motorische Aufgabe ausführten. Im Anschluss an die fMRI-Messungen wurden Daten zur subjektiven Gefühlslage und zur Zustandsangst erhoben, um die emotionale Auslenkung zu erfassen. Die Verhaltensdaten wurden mit SPSS analysiert, die fMRT- Datensätze wurden mit SPM2 nachverarbeitet. Änderungen der BOLD-Signal-Intensitäten in den primär sensomotorischen Aktivierungen wurden für die drei Bedingungen POS, NEU und NEG berechnet und miteinander verglichen.

Ergebnisse:

Im Vergleich zur neutralen Bedingung fand man sowohl in der positiven als auch in der negativen Bedingung eine Reduktion der Signalintensitätsänderungen im Bereich des sensomotorischen Handareals. Die Analyse der Daten zur Gefühlslage zeigte, dass die unangenehmen (NEG) Bilder einen stärkeren Effekt hatten als die angenehmen (POS). In Übereinstimmung mit diesem Ergebnis war auch die Abnahme der Signalintensitätsänderung in der negativen Bedingung deutlicher ausgeprägt (signifikant; p < 0,001), als in der positiven Bedingung.

Schlussfolgerung:

Diese Studie zeigt, dass die Gefühlslage einer Person die Ergebnisse einer fMRT-Untersuchung tatsächlich beeinflusst und dass eine emotional nicht ausgelenkte, neutral gestimmte Person die besten fMRT-Ergebnisse erzielt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ogawa S, Lee TM. Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn Reson Med. 1990;16:9–18.

    Article  PubMed  CAS  Google Scholar 

  2. Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 1990;14:68–78.

    Article  PubMed  CAS  Google Scholar 

  3. Thulborn KR, Waterton JC, Matthews PM, Radda GK. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta. 1982;714:265–70.

    PubMed  CAS  Google Scholar 

  4. Alkadhi H, Crelier GR, Boendermaker SH, Golay X, Hepp-Reymond MC, Kollias SS. Reproducibility of primary motor cortex somatotopy under controlled conditions. AJNR Am J Neuroradiol. 2002;23:1524–32.

    PubMed  Google Scholar 

  5. Fernandez G, Specht K, Weis S, Tendolkar I, Reuber M, Fell J, Klaver P, Ruhlmann J, Reul J, Elger CE. Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI. Neurology. 2003;60:969–75.

    PubMed  CAS  Google Scholar 

  6. Fesl G, Braun B, Rau S, Wiesmann M, Ruge M, Bruhns P, Linn J, Stephan T, Ilmberger J, Tonn JC, Bruckmann H. Is the center of mass (COM) a reliable parameter for the localization of brain function in fMRI? Eur Radiol. 2008;18:1031–7.

    Article  PubMed  CAS  Google Scholar 

  7. Havel P, Braun B, Rau S, Tonn JC, Fesl G, Bruckmann H, Ilmberger J. Reproducibility of activation in four motor paradigms: an fMRI study. J Neurol. 2006;253:471–6.

    Article  PubMed  Google Scholar 

  8. Kiehl KA, Liddle PF. Reproducibility of the hemodynamic response to auditory oddball stimuli: a six-week test-retest study. Hum Brain Mapp. 2003;18:42–52.

    Article  PubMed  Google Scholar 

  9. Liu JZ, Zhang L, Brown RW, Yue GH. Reproducibility of fMRI at 1.5 T in a strictly controlled motor task. Magn Reson Med. 2004;52:751–60.

    Article  PubMed  Google Scholar 

  10. Loubinoux I, Carel C, Alary F, Boulanouar K, Viallard G, Manelfe C, Rascol O, Celsis P, Chollet F. Within-session and between-session reproducibility of cerebral sensorimotor activation: a test-retest effect evidenced with functional magnetic resonance imaging. J Cereb Blood Flow Metab. 2001;21:592–607.

    Article  PubMed  CAS  Google Scholar 

  11. Machielsen WC, Rombouts SA, Barkhof F, Scheltens P, Witter MP. FMRI of visual encoding: reproducibility of activation. Hum Brain Mapp. 2000;9:156–64.

    Article  PubMed  CAS  Google Scholar 

  12. Mayer AR, Xu J, Pare-Blagoev J, Posse S. Reproducibility of activation in Broca’s area during covert generation of single words at high field: a single trial FMRI study at 4 T. Neuroimage. 2006;32:129–37.

    Article  PubMed  Google Scholar 

  13. McGonigle DJ, Howseman AM, Athwal BS, Friston KJ, Frackowiak RS, Holmes AP. Variability in fMRI: an examination of intersession differences. Neuroimage. 2000;11:708–34.

    Article  PubMed  CAS  Google Scholar 

  14. Rau S, Fesl G, Bruhns P, Havel P, Braun B, Tonn JC, Ilmberger J. Reproducibility of activations in Broca area with two language tasks: a functional MR imaging study. AJNR Am J Neuroradiol. 2007;28:1346–53.

    Article  PubMed  CAS  Google Scholar 

  15. Rombouts SA, Barkhof F, Hoogenraad FG, Sprenger M, Scheltens P. Within-subject reproducibility of visual activation patterns with functional magnetic resonance imaging using multislice echo planar imaging. Magn Reson Imaging. 1998;16:105–13.

    Article  PubMed  CAS  Google Scholar 

  16. Rutten GJ, Ramsey NF, van Rijen PC, van Veelen CW. Reproducibility of fMRI-determined language lateralization in individual subjects. Brain Lang. 2002;80:421–37.

    Article  PubMed  CAS  Google Scholar 

  17. Tegeler C, Strother SC, Anderson JR, Kim SG. Reproducibility of BOLD-based functional MRI obtained at 4 T. Hum Brain Mapp. 1999;7:267–83.

    Article  PubMed  CAS  Google Scholar 

  18. Yetkin FZ, McAuliffe TL, Cox R, Haughton VM. Test-retest precision of functional MR in sensory and motor task activation. AJNR Am J Neuroradiol. 1996;17:95–8.

    PubMed  CAS  Google Scholar 

  19. Atlas SW, Howard RS 2nd, Maldjian J, Alsop D, Detre JA, Listerud J, D’Esposito M, Judy KD, Zager E, Stecker M. Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: findings and implications for clinical management. Neurosurgery. 1996;38:329–38.

    Article  PubMed  CAS  Google Scholar 

  20. Jack CRJ, Lee CC, Ward HA, Riederer SJ. The role of functional MRI in planning perirolandic surgery. In: Moonen CTW, Bandettini PA, editors. Functional MRI. Berlin: Springer; 2000. p. 539–50.

    Google Scholar 

  21. Kim PE, Singh M. Functional magnetic resonance imaging for brain mapping in neurosurgery. Neurosurg Focus. 2003;15:E1.

    Article  PubMed  Google Scholar 

  22. Lee CC, Ward HA, Sharbrough FW, Meyer FB, Marsh WR, Raffel C, So EL, Cascino GD, Shin C, Xu Y, Riederer SJ, Jack CR Jr. Assessment of functional MR imaging in neurosurgical planning. AJNR Am J Neuroradiol. 1999;20:1511–9.

    PubMed  CAS  Google Scholar 

  23. Mueller WM, Yetkin FZ, Hammeke TA, Morris GL 3rd, Swanson SJ, Reichert K, Cox R, Haughton VM. Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery. 1996;39:515–20; discussion 520–1.

    Article  PubMed  CAS  Google Scholar 

  24. Pujol J, Conesa G, Deus J, Lopez-Obarrio L, Isamat F, Capdevila A. Clinical application of functional magnetic resonance imaging in presurgical identification of the central sulcus. J Neurosurg. 1998;88:863–9.

    Article  PubMed  CAS  Google Scholar 

  25. Tomczak RJ, Wunderlich AP, Wang Y, Braun V, Antoniadis G, Gorich J, Richter HP, Brambs HJ. fMRI for preoperative neurosurgical mapping of motor cortex and language in a clinical setting. J Comput Assist Tomogr. 2000;24:927–34.

    Article  PubMed  CAS  Google Scholar 

  26. Krings T, Reinges MH, Erberich S, Kemeny S, Rohde V, Spetzger U, Korinth M, Willmes K, Gilsbach JM, Thron A. Functional MRI for presurgical planning: problems, artefacts, and solution strategies. J Neurol Neurosurg Psychiatry. 2001;70:749–60.

    Article  PubMed  CAS  Google Scholar 

  27. Corbetta M. Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? Proc Natl Acad Sci U S A. 1998;95:831–8.

    Article  PubMed  CAS  Google Scholar 

  28. Hugdahl K, Thomsen T, Ersland L, Rimol LM, Niemi J. The effects of attention on speech perception: an fMRI study. Brain Lang. 2003;85:37–48.

    Article  PubMed  Google Scholar 

  29. Maunsell JH, Cook EP. The role of attention in visual processing. Philos Trans R Soc Lond B Biol Sci. 2002;357:1063–72.

    Article  PubMed  Google Scholar 

  30. Newman SD, Keller TA, Just MA. Volitional control of attention and brain activation in dual task performance. Hum Brain Mapp. 2007;28:109–17.

    Article  PubMed  Google Scholar 

  31. Thomsen T, Rimol LM, Ersland L, Hugdahl K. Dichotic listening reveals functional specificity in prefrontal cortex: an fMRI study. Neuroimage. 2004;21:211–8.

    Article  PubMed  Google Scholar 

  32. Lang PJ, Bradley MM, Cuthbert BN. International Affective Picture System (IAPS): affective ratings of pictures and instruction manual. Technical report A-6. Gainesville: University of Florida; 2005.

    Google Scholar 

  33. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561–71.

    PubMed  CAS  Google Scholar 

  34. Laux L, Glanzmann P, Schaffner P, Spielberger CD. Das Stait-Trait-Angstinventar. Weinheim: Beltz; 1981.

    Google Scholar 

  35. Friston KJ, Ashburner J, Poline JB, Frith CD, Heather JD, Frackowiak RSJ. Spatial registration and normalisation of images. Human Brain Mapping. 1995;2:165–89.

    Article  Google Scholar 

  36. Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R. Movement-related effects in fMRI time-series. Magn Reson Med. 1996;35:346–55.

    PubMed  CAS  Google Scholar 

  37. Jezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med. 1995;34:65–73.

    Article  PubMed  CAS  Google Scholar 

  38. Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping. 1995;2:189–210.

    Article  Google Scholar 

  39. Just MA, Carpenter PA, Keller TA, Emery L, Zajac H, Thulborn KR. Interdependence of nonoverlapping cortical systems in dual cognitive tasks. Neuroimage. 2001;14:417–26.

    Article  PubMed  CAS  Google Scholar 

  40. Just MA, Keller TA, Cynkar J. A decrease in brain activation associated with driving when listening to someone speak. Brain Res. 2008;1205:70–80.

    Article  PubMed  CAS  Google Scholar 

  41. Erthal FS, de Oliveira L, Mocaiber I, Pereira MG, Machado-Pinheiro W, Volchan E, Pessoa L. Load-dependent modulation of affective picture processing. Cogn Affect Behav Neurosci. 2005;5:388–95.

    Article  PubMed  Google Scholar 

  42. Hartikainen KM, Ogawa KH, Knight RT. Transient interference of right hemispheric function due to automatic emotional processing. Neuropsychologia. 2000;38:1576–80.

    Article  PubMed  CAS  Google Scholar 

  43. Tipples J, Sharma D. Orienting to exogenous cues and attentional bias to affective pictures reflect separate processes. Br J Psychol. 2000;91:87–97.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest Statement

The authors declare that there is no actual or potential conflict of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Fesl.

Additional information

The authors G. Fesl and M. Demmel contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fesl, G., Demmel, M., Albrecht, J. et al. Bad Mood—Bad Activation?. Clin Neuroradiol 20, 153–159 (2010). https://doi.org/10.1007/s00062-010-0019-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-010-0019-4

Keywords

Schlüsselwörter

Navigation