Skip to main content
Log in

Lipidsenkung: neue Substanzen und neue Konzepte

Lipid lowering: new agents and new concepts

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

LDL(„low-density lipoprotein“)-Cholesterin (LDL-C) ist ein kausaler Risikofaktor für kardiovaskuläre Komplikationen. Ein Zielwert wird risikobezogen, leitlinienbasiert und individualisiert festgelegt. Wir haben heutzutage die Möglichkeiten, LDL-C-Werte in Bereiche zu senken, die sogar mit einer Regression des Plaquevolumens verbunden sind. Zudem ist die Lipidtherapie ein Beispiel, wie sich die Pharmakotherapie von klassischen selektiven Hemmungen von Enzymen durch Medikamente (z. B. Statine) zur gezielten Neutralisierung von Proteinen durch Antikörper entwickelt hat. Die Reduktion atherogener Lipoproteine durch spezifische Hemmung oder Verminderung der mRNA von Zielproteinen (z. B. PCSK9, ANGPLT3, ApoC-III oder Apolipoprotein[a]) sowie eventuell eines Tages durch Impfung oder auch CRISP-basierte Gentherapie wird langfristig zu neuen Konzepten in der Therapie und Prävention von Fettstoffwechselstörungen und kardiovaskulären Komplikationen führen. Die kumulative Exposition atherogener Lipoproteine für die Gefäßwand wird durch den zeitlich gemittelten LDL-C-Wert bestimmt. Dieser hängt wesentlich von der Adhärenz des Patienten und der verordneten Behandlungsintensität durch Ärzte ab. Daher ist es wahrscheinlich, dass die Therapietreue den kumulativen Nutzen der Therapie beeinflusst. Entsprechend könnten die neuen, o. a. Therapiestrategien mit vermutlich höheren Adhärenzraten dazu beitragen, die kardiovaskuläre Prävention zu optimieren. Eine frühzeitige und effektive LDL-C-Senkung könnte langfristig das Auftreten kardiovaskulärer Komplikationen drastisch reduzieren und dazu beitragen, die Gesundheit unserer Patienten zu erhalten.

Abstract

Low-density lipoprotein (LDL) cholesterol (LDL-C) is a causal risk factor for cardiovascular complications. A target value is set according to risk, guideline-based and individual basis. We now have the means to lower LDL‑C levels to ranges that are even associated with plaque volume regression. Moreover, lipid treatment is an example of how pharmacotherapy has evolved from classical selective inhibition of enzymes by drugs (e.g. statins) to targeted neutralization of proteins by antibodies. The reduction of atherogenic lipoproteins by specific inhibition or reduction of mRNA of target proteins, e.g. PCSK‑9, ANGPLT3, ApoC-III or Apo (a), and possibly one day by vaccination or even CRISP-based gene therapy will in the long term lead to new concepts in the treatment and prevention of dyslipidemia and cardiovascular complications. The cumulative exposure of atherogenic lipoproteins to the vessel wall is determined by the time-averaged LDL‑C level. This essentially depends on patient adherence and prescribed treatment intensity by physicians. Therefore, it is likely that treatment adherence influences the cumulative benefit of treatment. Accordingly, the new therapeutic strategies mentioned above with presumably higher adherence rates could help to optimize cardiovascular prevention. Early and effective LDL‑C lowering could drastically reduce the incidence of cardiovascular complications in the long term and help to maintain the health of our patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Boren J, Chapman MJ, Krauss RM et al (2020) Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 41(24):2313–2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Merkel M, Müller-Wieland D, von Eckardtsein A (2020) Fettstoffwechsel. In: Blum HE, Müller-Wieland D (Hrsg) Klinische Pathophysiologie, 11. Aufl. Thieme, Stuttgart, New York, Delhi, Rio, S 200–232

    Google Scholar 

  3. Brunner FJ, Waldeyer C, Ojeda F et al (2019) Application of non-HDL cholesterol for population-based cardiovascular risk stratification: results from the Multinational Cardiovascular Risk Consortium. Lancet 394(10215):2173–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Varbo A, Benn M, Tybjærg-Hansen A et al (2013) Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol 61(4):427–436

    Article  CAS  PubMed  Google Scholar 

  5. Varbo A, Nordestgaard BG (2016) Remnant cholesterol and triglyceride-rich lipoproteins in atherosclerosis progression and cardiovascular disease. Arterioscl Thromb Vasc Biol 30:2133–2135

  6. Vallejo-Vaz AJ, Fayyad R, Boekholdt SM et al (2018) Triglyceride-rich lipoprotein cholesterol and risk of cardiovascular events among patients receiving statin therapy in the TNT trial. Circulation 138(8):770–781

    Article  CAS  PubMed  Google Scholar 

  7. Ridker PM (2014) LDL cholesterol: controversies and future therapeutic directions. Lancet 384(9943):607–617

    Article  CAS  PubMed  Google Scholar 

  8. Mach F (2020) 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 41:111–188

    Article  PubMed  Google Scholar 

  9. Sabatine MS, Giugliano RP, Wiviott SD et al (2015) Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med 372(16):1500–1509

    Article  CAS  PubMed  Google Scholar 

  10. Robinson JG, Farnier M, Krempf M et al (2015) Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med 372(16):1489–1499

    Article  CAS  PubMed  Google Scholar 

  11. Cannon CP, Blazing MA, Giugliano RP et al (2015) Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 372(25):2387–2397

    Article  CAS  PubMed  Google Scholar 

  12. Nissen SE, Nicholls SJ, Sipahi I et al (2006) Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 295(13):1556–1565

    Article  CAS  PubMed  Google Scholar 

  13. Nissen SE, Tuzcu EM, Schoenhagen P et al (2004) Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 291(9):1071–1080

    Article  CAS  PubMed  Google Scholar 

  14. Nicholls SJ, Puri R, Anderson T et al (2016) Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA 316(22):2373–2384

    Article  CAS  PubMed  Google Scholar 

  15. Giugliano RP, Pedersen TR, Park J‑G et al (2017) Clinical efficacy and safety of achieving very low LDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab: a prespecified secondary analysis of the FOURIER trial. Lancet 390(10106):1962–1971

    Article  CAS  PubMed  Google Scholar 

  16. Ballantyne CM, Laufs U, Ray KK et al (2020) Bempedoic acid plus ezetimibe fixed-dose combination in patients with hypercholesterolemia and high CVD risk treated with maximally tolerated statin therapy. Eur J Prev Cardiol 27(6):593–603

    Article  PubMed  Google Scholar 

  17. Ray KK, Landmesser U, Leiter LA et al (2017) Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med 376:1430–1440

    Article  CAS  PubMed  Google Scholar 

  18. Bhatt DL, Steg PG, Miller M et al (2019) Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med 380(1):11–22

    Article  CAS  PubMed  Google Scholar 

  19. Watanabe Y, Tatsuno I (2020) Prevention of cardiovascular events with omega‑3 polyunsaturated fatty acids and the mechanism involved. J Atheroscler Thromb 27(3):183–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goldstein JL, Brown MS (2015) A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161(1):161–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Akoumianakis I, Zvintzou E, Kypreos K, Filippatos TD (2021) ANGPTL3 and apolipoprotein C‑III as novel lipid-lowering targets. Curr Atheroscler Rep 23(5):1–11

    Article  Google Scholar 

  22. Raal FJ, Rosenson RS, Reeskamp LF et al (2020) Evinacumab for homozygous familial hypercholesterolemia. N Engl J Med 383(8):711–720

    Article  CAS  PubMed  Google Scholar 

  23. Bergmark BA, Marston NA, Bramson CR et al (2022) Effect of vupanorsen on non-high-density lipoprotein cholesterol levels in statin-treated patients with elevated cholesterol: TRANSLATE-TIMI 70. Circulation 145(18):1377–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. (2020) pharmaceuticals A: Arrowhead reports interim clinical data on cardiometabolic candidates ARO-APOC3 and ARO-ANG3. https://ir.arrowheadpharma.com/node/15246/pdf. Zugegriffen: 4. Juni 2021

  25. Company ELa (2020) A study of LY3561774 in participants with dyslipidemia (NCT04644809). https://clinicaltrials.gov/ct2/show/NCT04644809?term=LY+3561774&draw=2&rank=1. Zugegriffen: 7. Nov. 2021

  26. Tardif J‑C, Karwatowska-Prokopczuk E, Amour ES et al (2022) Apolipoprotein C‑III reduction in subjects with moderate hypertriglyceridaemia and at high cardiovascular risk. Eur Heart J 43(14):1401–1412

    Article  PubMed  PubMed Central  Google Scholar 

  27. Aguilar-Salinas CA, Gómez-Díaz RA, Corral P (2022) New therapies for primary hyperlipidemia. J Clin Endocrinol Metab 107(5):1216–1224

    Article  PubMed  Google Scholar 

  28. Chen R, Lin S, Chen X (2022) The promising novel therapies for familial hypercholesterolemia. J Clin Lab Anal. https://doi.org/10.1002/jcla.24552

    Article  PubMed  PubMed Central  Google Scholar 

  29. HDL Working Group of the Exome Sequencing Project NH, Lung (2014) Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med 371(1):22–31

    Article  Google Scholar 

  30. Reyes-Soffer G, Sztalryd C, Horenstein RB et al (2019) Effects of APOC3 heterozygous deficiency on plasma lipid and lipoprotein metabolism. Arterioscler Thromb Vasc Biol 39(1):63–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wulff AB, Nordestgaard BG, Tybjærg-Hansen A (2018) APOC3 loss-of-function mutations, remnant cholesterol, low-density lipoprotein cholesterol, and cardiovascular risk: mediation-and meta-analyses of 137 895 individuals. Arterioscler Thromb Vasc Biol 38(3):660–668

    Article  CAS  PubMed  Google Scholar 

  32. Taskinen M‑R, Packard CJ, Borén J (2019) Emerging evidence that ApoC-III inhibitors provide novel options to reduce the residual CVD. Curr Atheroscler Rep 21(8):1–10

    Article  CAS  Google Scholar 

  33. Tsimikas S, Viney NJ, Hughes SG et al (2015) Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study. Lancet 386(10002):1472–1483. https://doi.org/10.1016/S0140-6736(15)61252-1

    Article  CAS  PubMed  Google Scholar 

  34. Ray KK, Molemans B, Schoonen WM et al (2020) EU-wide cross-sectional observational study of lipid-modifying therapy use in secondary and primary care: the DA VINCI study. Eur J Prev Cardiol 28(11):1279–1289. https://doi.org/10.1093/eurjpc/zwaa047

    Article  Google Scholar 

  35. Kotseva K, De Backer G, De Bacquer D et al (2019) Lifestyle and impact on cardiovascular risk factor control in coronary patients across 27 countries: results from the European Society of Cardiology ESC-EORP EUROASPIRE V registry. Eur J Prev Cardiol 26(8):824–835

    Article  PubMed  Google Scholar 

  36. Schubert J, Lindahl B, Melhus H et al (2021) Low-density lipoprotein cholesterol reduction and statin intensity in myocardial infarction patients and major adverse outcomes: a Swedish nationwide cohort study. Eur Heart J 42(3):243–252

    Article  CAS  PubMed  Google Scholar 

  37. Virani SS, Kennedy KF, Akeroyd JM et al (2018) Variation in lipid-lowering therapy use in patients with low-density lipoprotein cholesterol≥ 190 mg/dL: insights from the National Cardiovascular Data Registry–Practice Innovation and Clinical Excellence registry. Circulation 11(5):e4652

    PubMed  Google Scholar 

  38. Choudhry NK, Fischer MA, Avorn J et al (2011) The implications of therapeutic complexity on adherence to cardiovascular medications. Arch Intern Med 171(9):814–822

    PubMed  Google Scholar 

  39. Fischer F, Lange K, Klose K et al (2016) Barriers and strategies in guideline implementation—a scoping review. Healthcare 4:36. https://doi.org/10.3390/healthcare4030036

    Article  PubMed Central  Google Scholar 

  40. Ray KK (2021) Changing the paradigm for post-MI cholesterol lowering from intensive statin monotherapy towards intensive lipid-lowering regimens and individualized care. Eur Heart J 42(3):253–256

    Article  PubMed  Google Scholar 

  41. Lansberg P, Lee A, Lee Z‑V et al (2018) Nonadherence to statins: individualized intervention strategies outside the pill box. Vasc Health Risk Manag 14:91–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Laufs U, Karmann B, Pittrow D (2016) Atorvastatin treatment and LDL cholesterol target attainment in patients at very high cardiovascular risk. Clin Res Cardiol 105(9):783–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Khunti K, Danese MD, Kutikova L et al (2018) Association of a combined measure of adherence and treatment intensity with cardiovascular outcomes in patients with atherosclerosis or other cardiovascular risk factors treated with statins and/or ezetimibe. JAMA Netw Open 1(8):e185554

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wei L, Wang J, Thompson P et al (2002) Adherence to statin treatment and readmission of patients after myocardial infarction: a six year follow up study. Heart 88(3):229–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bangalore S, Breazna A, DeMicco DA et al (2015) Visit-to-visit low-density lipoprotein cholesterol variability and risk of cardiovascular outcomes. J Am Coll Cardiol 65(15):1539–1548. https://doi.org/10.1016/j.jacc.2015.02.017

    Article  CAS  PubMed  Google Scholar 

  46. Brandts J, Ray KK (2020) Low density lipoprotein cholesterol–lowering strategies and population health: time to move to a cumulative exposure model. Circulation 141(11):873–876

    Article  PubMed  Google Scholar 

  47. Brandts J, Ray KK (2021) Familial hypercholesterolemia: JACC focus seminar 4/4. J Am Coll Cardiol 78(18):1831–1843

    Article  PubMed  Google Scholar 

  48. Musunuru K, Chadwick AC, Mizoguchi T et al (2021) In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593(7859):429–434

    Article  CAS  PubMed  Google Scholar 

  49. Lavecchia A, Cerchia C (2019) Recent advances in developing PCSK9 inhibitors for lipid-lowering therapy. Future Med Chem 11(5):423–441

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Müller-Wieland.

Ethics declarations

Interessenkonflikt

J. Brandts hat Honarare für Beratung und Vorträge erhalten von Amgen und AstraZeneca. D. Müller-Wieland hat Honorare für Beratung und Vorträge erhalten von Amarin, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Daiichi-Sankyo, Lilly, Merck Sharp & Dohme, Novo Nordisk und Sanofi. M. Verket gibt an, dass kein Interessenkonflikt besteht. Forschungsförderung geht projektbezogen an das klinische Studienzentrum der Klinik bzw. des UKA.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandts, J., Verket, M. & Müller-Wieland, D. Lipidsenkung: neue Substanzen und neue Konzepte. Herz 47, 419–425 (2022). https://doi.org/10.1007/s00059-022-05133-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-022-05133-7

Schlüsselwörter

Keywords

Navigation