Skip to main content
Log in

Rhythmologische und metabolische Kontrolle

Rhythm and metabolic control

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Diabetes mellitus und Vorhofflimmern (VHF) zeigen eine stetige Zunahme ihrer Prävalenz. Diabetes stellt einen relevanten, nicht zu unterschätzenden Risikofaktor für die Entstehung und Aufrechterhaltung von VHF dar. Im Rahmen eines Diabetes auftretende Schwankungen des Blutzuckerspiegels, inflammatorische Prozesse und oxidativer Stress führen zu strukturellen, elektromechanischen, elektrischen und autonomen Umbau-, d. h. Remodelling-Prozessen am Herzmuskel, welche VHF begünstigen. Wenn VHF und Diabetes aufeinandertreffen, ist dies häufig mit einer stärker ausgeprägten Symptomatik, einer geringeren Lebensqualität, häufigeren Hospitalisierungen und einer höheren Mortalität vergesellschaftet. Kann die frühe und konsequente euglykämische Blutzuckereinstellung atriale Remodelling-Prozesse, kardiovaskuläre Endpunkte und das Auftreten von VHF effektiv beeinflussen? Gibt es neue gemeinsame, medikamentöse Therapieansätze für die Behandlung von Diabetes und VHF? Welche Ablationsstrategie sollte bei der interventionellen Therapie von Vorhofflimmern bei Diabetespatienten gewählt werden? In diesem Übersichtsartikel wird versucht, Antworten auf diese Fragen zu finden.

Abstract

Diabetes mellitus and atrial fibrillation show a steady increase in their prevalence. Diabetes mellitus is a relevant risk factor for the development and maintenance of atrial fibrillation, which should not be underestimated. Fluctuations in blood glucose levels occurring in diabetes, inflammatory processes and oxidative stress lead to structural, electromechanical, electrical and autonomic remodelling processes in the myocardium that promote atrial fibrillation. When atrial fibrillation and diabetes mellitus coincide, this is often associated with more pronounced symptoms, lower quality of life, more frequent hospitalization and a higher mortality rate. Can early and consistent euglycemic blood glucose monitoring effectively influence atrial remodelling processes, cardiovascular end points and the occurrence of atrial fibrillation? Are there new and combined drug treatment approaches for diabetes mellitus and atrial fibrillation? What ablation strategy should be adopted for the interventional treatment of atrial fibrillation in patients with diabetes mellitus? This review article attempts to find answers to these questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Hindricks G, Potpara T, Dagres N, ESC Scientific Document Group et al (2021) 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European association for cardio-thoracic surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European society of cardiology (ESC) developed with the special contribution of the European heart rhythm association (EHRA) of the ESC. Eur Heart J 42:373–498

    Article  PubMed  Google Scholar 

  2. Mahmood SS, Levy D, Vasan RS, Wang TJ (2014) The Framingham heart study and the epidemiology of cardiovascular disease: a historical perspective. Lancet 383:999–1008. https://doi.org/10.1016/S0140-6736(13)61752-3

    Article  PubMed  Google Scholar 

  3. United Kingdom Prospective Diabetes Study (UKPDS) (1995) Relative efficacy of randomly allocated diet, sulphonylurea, insulin, or metformin in patients with newly diagnosed non-insulin dependent diabetes followed for three years. BMJ 310(6972):83–88

    Article  Google Scholar 

  4. Huxley RR, Filion KB, Konety S, Alonso A (2011) Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation. Am J Cardiol 08:56–62

    Article  Google Scholar 

  5. Benjamin EJ, Muntner P, Alonso A et al (2019) American heart association council on epidemiology and prevention statistics committee and stroke statistics subcommittee. Heart disease and stroke statistics-2019 update: a report from the American heart association. Circulation 139:e56–e528

    Article  PubMed  Google Scholar 

  6. Costard-Jäckle A, Tschöpe D, Meinertz T (2019) Cardiovascular outcome in type 2 diabetes and atrial fibrillation. Herz 44:522–525

    Article  PubMed  Google Scholar 

  7. Stegmann C, Jahnke C, Paetsch I et al (2018) Association of left ventricular late gadolinium enhancement with left atrial low voltage areas in patients with atrial fibrillation. Europace 20:1606–1611

    Article  PubMed  Google Scholar 

  8. Du X, Ninomiya T, de Galan B, ADVANCE Collaborative Group et al (2009) Risks of cardiovascular events and effects of routine blood pressure lowering among patients with type 2 diabetes and atrial fibrillation: results of the ADVANCE study. Eur Heart J 30:1128–1135

    Article  PubMed  Google Scholar 

  9. Kumar N, Echouffo-Tcheugui JB (2021) Diabetes and atrial fibrillation in hospitalized patients in the United States. Clin Cardiol 44:340–348

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang A, Green JB, Halperin JL et al (2019) Atrial fibrillation and diabetes mellitus: JACC review topic of the week. J Am Coll Cardiol 74:1107–1115

    Article  PubMed  Google Scholar 

  11. Ostgren CJ, Merlo J, Råstam L, Lindblad U (2004) Atrial fibrillation and its association with type 2 diabetes and hypertension in a Swedish community. Diabetes Obes Metab 6:367–374

    Article  CAS  PubMed  Google Scholar 

  12. Chan YH, Chang GJ, Lai YJ et al (2019) Atrial fibrillation and its arrhythmogenesis associated with insulin resistance. Cardiovasc Diabetol 18:125

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chang SL, Tuan TC, Tai CT et al (2009) Comparison of outcome in catheter ablation of atrial fibrillation in patients with versus without the metabolic syndrome. Am J Cardiol 103:67–72

    Article  PubMed  Google Scholar 

  14. Chao TF, Suenari K, Chang SL et al (2010) Atrial substrate properties and outcome of catheter ablation in patients with paroxysmal atrial fibrillation associated with diabetes mellitus or impaired fasting glucose. Am J Cardiol 106:1615–1620

    Article  CAS  PubMed  Google Scholar 

  15. Guckel D, Isgandarova K, Bergau L et al (2021) The effect of diabetes mellitus on the recurrence of atrial fibrillation after ablation. J Clin Med 10:4863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Echouffo-Tcheugui JB, Shrader P, Thomas L et al (2017) Care patterns and outcomes in atrial fibrillation patients with and without diabetes: ORBIT-AF registry. J Am Coll Cardiol 70:1325–1335

    Article  PubMed  Google Scholar 

  17. Targher G, Mantovani A, Pichiri I et al (2013) Non-alcoholic fatty liver disease is associated with an increased prevalence of atrial fibrillation in hospitalized patients with type 2 diabetes. Clin Sci (Lond) 125:301–309

    Article  CAS  Google Scholar 

  18. Goudis CA, Kallergis EM, Vardas PE (2012) Extracellular matrix alterations in the atria: insights into the mechanisms and perpetuation of atrial fibrillation. Europace 14:623–630. https://doi.org/10.1093/europace/eur398

    Article  PubMed  Google Scholar 

  19. Gu J, Fan YQ, Zhang JF, Wang CQ (2017) Impact of long-term glycemic variability on development of atrial fibrillation in type 2 diabetic patients. Anatol J Cardiol 18:410–416

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Qi W, Zhang N, Korantzopoulos P et al (2017) Serum glycated hemoglobin level as a predictor of atrial fibrillation: a systematic review with meta-analysis and meta-regression. PLoS ONE 12:e170955

    Article  PubMed  PubMed Central  Google Scholar 

  21. Iguchi Y, Kimura K, Shibazaki K et al (2012) HbA1c and atrial fibrillation: a cross-sectional study in Japan. Int J Cardiol 156:156–159

    Article  PubMed  Google Scholar 

  22. Li Y, Liu B, Li Y et al (2019) Epicardial fat tissue in patients with diabetes mellitus: a systematic review and meta-analysis. Cardiovasc Diabetol 18:3

    Article  PubMed  PubMed Central  Google Scholar 

  23. Otake H, Suzuki H, Honda T, Maruyama Y (2009) Influences of autonomic nervous system on atrial arrhythmogenic substrates and the incidence of atrial fibrillation in diabetic heart. Int Heart J 50:627–641

    Article  PubMed  Google Scholar 

  24. Guckel D, Schmidt A, Gutleben KJ et al (2020) Pulmonary vein isolation and beyond: predictive value of vagal reactions in second-generation cryoballoon ablation for the outcome of persistent atrial fibrillation. Heart Rhythm 17:600–606

    Article  PubMed  Google Scholar 

  25. Jenkins DJA, Dehghan M, Mente A, PURE Study Investigators et al (2021) Glycemic index, glycemic load, and cardiovascular disease and mortality. N Engl J Med 384:1312–1322

    Article  CAS  PubMed  Google Scholar 

  26. McGuire DK, Shih WJ, Cosentino F et al (2021) Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: a meta-analysis. JAMA Cardiol 6:148–158

    Article  PubMed  Google Scholar 

  27. Palmer SC, Tendal B, Mustafa RA et al (2021) Sodium-glucose cotransporter protein‑2 (SGLT-2) inhibitors and glucagon-like peptide‑1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. BMJ 372:m4573

    Article  PubMed  PubMed Central  Google Scholar 

  28. McDonagh TA, Metra M, Adamo M, ESC Scientific Document Group et al (2021) 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42:3599–3726

    Article  CAS  PubMed  Google Scholar 

  29. Zelniker TA, Bonaca MP, Furtado RHM et al (2020) Effect of dapagliflozin on atrial fibrillation in patients with type 2 diabetes mellitus: insights from the DECLARE-TIMI 58 trial. Circulation 141:1227–1234

    Article  CAS  PubMed  Google Scholar 

  30. Sato T, Aizawa Y, Yuasa S et al (2018) The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc Diabetol 17:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Filippatos G, Anker SD, Agarwal R, FIDELIO-DKD Investigators et al (2021) Finerenone and cardiovascular outcomes in patients with chronic kidney disease and type 2 diabetes. Circulation 143:540–552

    Article  CAS  PubMed  Google Scholar 

  32. Filippatos G, Anker SD, Agarwal R, FIGARO-DKD Investigators et al (2022) Finerenone reduces risk of incident heart failure in patients with chronic kidney disease and type 2 diabetes: analyses from the FIGARO-DKD trial. Circulation 145:437–447

    Article  CAS  PubMed  Google Scholar 

  33. Agarwal R, Filippatos G, Pitt B, FIDELIO-DKD, FIGARO-DKD investigators et al (2022) Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J 43:474–484

    Article  PubMed  Google Scholar 

  34. Swedberg K, Zannad F, McMurray JJ, EMPHASIS-HF Study Investigators et al (2012) Eplerenone and atrial fibrillation in mild systolic heart failure: results from the EMPHASIS-HF (eplerenone in mild patients hospitalization and survival study in heart failure) study. J Am Coll Cardiol 59:1598–1603

    Article  CAS  PubMed  Google Scholar 

  35. Neefs J, van den Berg NWE, Krul SPJ et al (2020) Effect of spironolactone on atrial fibrillation in patients with heart failure with preserved ejection fraction: post-hoc analysis of the randomized, placebo-controlled TOPCAT trial. Am J Cardiovasc Drugs 20:73–80

    Article  CAS  PubMed  Google Scholar 

  36. Lavall D, Selzer C, Schuster P et al (2014) The mineralocorticoid receptor promotes fibrotic remodeling in atrial fibrillation. J Biol Chem 289:6656–6668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Williams SE, Linton NWF, Harrison J et al (2017) Intra-atrial conduction delay revealed by multisite incremental atrial pacing is an independent marker of remodeling in human atrial fibrillation. JACC Clin Electrophysiol 3:1006–1017

    Article  PubMed  PubMed Central  Google Scholar 

  38. Williams SE, Linton N, O’Neill L et al (2017) The effect of activation rate on left atrial bipolar voltage in patients with paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol 28:1028–1036. https://doi.org/10.1111/jce.13282

    Article  PubMed  PubMed Central  Google Scholar 

  39. Arentz T, Weber R, Bürkle G et al (2007) Small or large isolation areas around the pulmonary veins for the treatment of atrial fibrillation? Results from a prospective randomized study. Circulation 115:3057–3063. https://doi.org/10.1161/CIRCULATIONAHA.107.690578

    Article  PubMed  Google Scholar 

  40. Ouyang F, Ernst S, Chun J et al (2005) Electrophysiological findings during ablation of persistent atrial fibrillation with electroanatomic mapping and double Lasso catheter technique. Circulation 112:3038–3048

    Article  PubMed  Google Scholar 

  41. Rottner L, Metzner A, Ouyang F et al (2017) Direct comparison of point-by-point and rapid ultra-high-resolution electroanatomical mapping in patients scheduled for ablation of atrial fibrillation. J Cardiovasc Electrophysiol 28:289–297

    Article  PubMed  Google Scholar 

  42. Borlich M, Iden L, Kuhnhardt K et al (2018) 3D mapping for PVI- geometry, image integration and incorporation of contact force into work flow. J Atr Fibrillation 10:1795

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rolf S, Schoene K, Kircher S et al (2019) Catheter ablation of atrial fibrillation with nonfluoroscopic catheter visualization‑a prospective randomized comparison. J Interv Card Electrophysiol 54:35–42

    Article  PubMed  Google Scholar 

  44. Paetsch I, Jahnke C, Hilbert S et al (2017) Cardiovascular magnetic resonance-guided electrophysiological interventions: radiofrequency ablation of typical atrial flutter. Circ Cardiovasc Imaging 10:e5780

    Article  PubMed  Google Scholar 

  45. Kowallick JT, Staab W, Schuster A et al (2019) Reverse left ventricular structural remodeling after catheter ablation of atrial fibrillation in patients with preserved left ventricular function: insights from cardiovascular magnetic resonance native T1 mapping. Heart Rhythm 16:424–432

    Article  PubMed  Google Scholar 

  46. Marrouche NF, Wilber D, Hindricks G et al (2014) Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA 311:498–506

    Article  CAS  PubMed  Google Scholar 

  47. ElMaghawry M, Romeih S (2015) DECAAF: emphasizing the importance of MRI in AF ablation. Glob Cardiol Sci Pract 2015:8

    Article  PubMed  PubMed Central  Google Scholar 

  48. Siebermair J, Kholmovski EG, Marrouche N (2017) Assessment of left atrial fibrosis by late gadolinium enhancement magnetic resonance imaging: methodology and clinical implications. JACC Clin Electrophysiol 3:791–802

    Article  PubMed  Google Scholar 

  49. Akoum N, Wilber D, Hindricks G et al (2015) MRI assessment of ablation-induced scarring in atrial fibrillation: analysis from the DECAAF study. J Cardiovasc Electrophysiol 26:473–480

    Article  PubMed  Google Scholar 

  50. Marrouche NF, Greene T, Dean JM et al (2021) Efficacy of LGE-MRI-guided fibrosis ablation versus conventional catheter ablation of atrial fibrillation: the DECAAF II trial: study design. J Cardiovasc Electrophysiol 32:916–924

    Article  PubMed  Google Scholar 

  51. Akoum N, Daccarett M, McGann C et al (2011) Atrial fibrosis helps select the appropriate patient and strategy in catheter ablation of atrial fibrillation: a DE-MRI guided approach. J Cardiovasc Electrophysiol 22:16–22

    Article  PubMed  Google Scholar 

  52. Lin CS, Pan CH (2008) Regulatory mechanisms of atrial fibrotic remodeling in atrial fibrillation. Cell Mol Life Sci 65:1489–1508

    Article  CAS  PubMed  Google Scholar 

  53. Egert S, Baxheinrich A, Lee-Barkey YH et al (2014) Effects of an energy-restricted diet rich in plant-derived alpha-linolenic acid on systemic inflammation and endothelial function in overweight-to-obese patients with metabolic syndrome traits. Br J Nutr 112:1315–1322

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Guckel.

Ethics declarations

Interessenkonflikt

D. Guckel, C. Sohns und P. Sommer geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guckel, D., Sohns, C. & Sommer, P. Rhythmologische und metabolische Kontrolle. Herz 47, 410–418 (2022). https://doi.org/10.1007/s00059-022-05128-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-022-05128-4

Schlüsselwörter

Keywords

Navigation