Skip to main content
Log in

Kosten-Nutzen-Analyse neuer Lipidsenker

Cost-benefit analysis of new lipid-lowering agents

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Trotz optimaler medikamentöser Therapie inklusive eines Statins und Ezetimib sind Patienten mit einer atherosklerotischen kardiovaskulären Erkrankung einem hohen Risiko für kardiovaskuläre Folgeereignisse ausgesetzt. Dyslipidämien stellen hierfür eine zentrale und kausale Ursache dar, mit einer häufigen Verfehlung der in Leitlinien empfohlenen Zielwerte. Zur Behandlung dieses residuellen Risikos stehen zunehmend neue lipidsenkende Substanzen zur Verfügung. Um ihre Anwendung angesichts teils hoher Therapiekosten zu rechtfertigen, sind Kosten-Nutzen-Analysen notwendig. Wichtige Kenngrößen in der Evaluation einer Kosteneffizienz sind QALY („quality adjusted life years“) und die ICER („incremental cost effectiveness ratio“). Grenzwerte der ICER, unter der eine Therapie als kosteneffektiv bewertet wird, variieren je nach Gesundheitssystem. Der Einsatz der PCSK9(Proproteinkonvertase Subtilisin/Kexin Typ 9)-Inhibitoren Alirocumab und Evolocumab wird als kosteneffektiv insbesondere bei den Patienten angesehen, die einen hohen LDL(„low-density lipoprotein“)-Cholesterin(LDL-C)-Wert vor Therapiebeginn oder ein hohes individuelles kardiovaskuläres Risiko gemäß dem Vorliegen definierter Risikokriterien aufweisen. Ähnliches gilt für die PCSK9-siRNA („small interfering RNA“) Inclisiran. Die Gabe von Bempedoinsäure wird insbesondere bei Patienten mit Statinintoleranz als kosteneffektiv gewertet. Die Gabe von Icosapent-Ethyl wird insgesamt als kosteneffektiv gewertet, die Datenlage hinsichtlich der genauen placebokontrollierten Wirksamkeit ist jedoch noch inkonklusiv.

Abstract

Patients with atherosclerotic cardiovascular disease have a high risk for subsequent cardiovascular events despite optimal drug treatment including statins and ezetimibe. Dyslipidemia represents a central and direct cause of this, with a frequent failure to achieve the target values recommended in the guidelines. New lipid-lowering substances are increasingly becoming available for treatment of this residual risk. Due to their high cost, cost-effectiveness analyses are required in order to justify their use. Important variables when considering the cost-effectiveness of a drug are quality adjusted life years (QALY) and the incremental cost-effectiveness ratio (ICER). The lower bounds of the ICER determining the cost-effectiveness of a treatment vary between healthcare systems. The proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors alirocumab and evolocumab are deemed to be cost-effective particularly in patients with high levels of low-density lipoprotein cholesterol (LDL-C) prior to treatment or with a high cardiovascular risk as determined by the presence of defined risk criteria. Similar considerations apply to the PCSK9 small interfering RNA (siRNA) inclisiran. Administration of bempedoic acid is deemed cost-effective especially in patients with statin intolerance. Eicosapentaenoic acid is deemed cost-effective overall, although the data with respect to the exact placebo-controlled efficacy are still inconclusive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Knuuti J, Wijns W, Saraste A (2020) 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 41:407–477

    Article  PubMed  Google Scholar 

  2. Patel KV, Pandey A, de Lemos JA (2018) Conceptual framework for addressing residual atherosclerotic cardiovascular disease risk in the era of precision medicine. Circulation 137:2551–2553

    Article  PubMed  Google Scholar 

  3. Ference BA, Ginsberg HN, Graham I et al (2017) Low-density lipoproteins cause atherosclerotic cardiovascular disease. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement fromthe European atherosclerosis society consensus panel. Eur Heart J 38:2459–2472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baigent C, Blackwell L, Emberson J et al (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet 376:1670–1681

    Article  CAS  PubMed  Google Scholar 

  5. Mach F, Baigent C, Catapano AL et al (2020) 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 41:111–188

    Article  PubMed  Google Scholar 

  6. Klempfner R, Erez A, Sagit BZ et al (2016) Elevated triglyceride level is independently associated with increased all-cause mortality in patients with established coronary heart disease: twenty-two-year follow-up of the bezafibrate infarction prevention study and registry. Circ Cardiovasc Qual Outcomes 9:100–108

    Article  PubMed  Google Scholar 

  7. Nichols GA, Philip S, Reynolds K et al (2018) Increased cardiovascular risk in hypertriglyceridemic patients with statin-controlled LDL cholesterol. J Clin Endocrinol Metab 103:3019–3027

    Article  PubMed  Google Scholar 

  8. Nestel PJ, Barnes EH, Tonkin AM et al (2013) Plasma lipoprotein(a) concentration predicts future coronary and cardiovascular events in patients with stable coronary heart disease. Arterioscler Thromb Vasc Biol 33:2902–2908

    Article  CAS  PubMed  Google Scholar 

  9. Willeit P, Ridker PM, Nestel PJ et al (2018) Baseline and on-statin treatment lipoprotein(a) levels for prediction of cardiovascular events: individual patient-data meta-analysis of statin outcome trials. Lancet 392:1311–1320

    Article  CAS  PubMed  Google Scholar 

  10. Cannon CP, Blazing MA, Giugliano RP et al (2015) Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 372:2387–2397

    Article  CAS  PubMed  Google Scholar 

  11. Banach M, Duell PB, Gotto AM et al (2020) Association of bempedoic acid administration with atherogenic lipid levels in phase 3 randomized clinical trials of patients with hypercholesterolemia. JAMA Cardiol 5(10):1124–1135. https://doi.org/10.1001/jamacardio.2020.2314

    Article  PubMed  Google Scholar 

  12. Sabatine MS, Giugliano RP, Keech AC et al (2017) Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 376:1713–1722

    Article  CAS  PubMed  Google Scholar 

  13. Schwartz GG, Steg PG, Szarek M et al (2018) Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med 379:2097–2107

    Article  CAS  PubMed  Google Scholar 

  14. Ray KK, Wright RS, Kallend D et al (2020) Two phase 3 trials of Inclisiran in patients with elevated LDL cholesterol. N Engl J Med 382:1507–1519

    Article  CAS  PubMed  Google Scholar 

  15. Bhatt DL, Steg PG, Miller M et al (2019) Cardiovascular risk reduction with Icosapent ethyl for hypertriglyceridemia. N Engl J Med 380:11–22

    Article  CAS  PubMed  Google Scholar 

  16. Tsimikas S, Karwatowska-Prokopczuk E, Gouni-Berthold I et al (2020) Lipoprotein(a) reduction in persons with cardiovascular disease. N Engl J Med 382:244–255

    Article  CAS  PubMed  Google Scholar 

  17. Ray KK, Molemans B, Schoonen WM et al (2020) EU-wide cross-sectional observational study of lipid-modifying therapy use in secondary and primary care: the DA VINCI study. Eur J Prev Cardiol 28:1279–1289

    Article  Google Scholar 

  18. Blaum C, Seiffert M, Goßling A et al (2020) The need for PCSK9 inhibitors and associated treatment costs according to the 2019 ESC dyslipidaemia guidelines vs. the risk based allocation algorithm of the 2017 ESC consensus statement: a simulation study in a contemporary CAD cohort. Eur J Prev Cardiol 28:47–56

    Article  Google Scholar 

  19. Allahyari A, Jernberg T, Hagstrom E et al (2020) Application of the 2019 ESC/EAS dyslipidaemia guidelines to nationwide data of patients with a recent myocardial infarction: a simulation study. Eur Heart J 41:3900–3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen (IQWiG) (2022) Allgemeine Methoden (Version 6.1)

    Google Scholar 

  21. Grundy SM, Stone NJ, Bailey AL et al (2019) 2018 AHA/ACC guideline on the management of blood cholesterol. J Am Coll Cardiol 73:e285–e350

    Article  PubMed  Google Scholar 

  22. National Institute for Health and Care Excellence (2013) Guide to the methods of technology appraisal 2013. Process and methods, S 69–70

    Google Scholar 

  23. Visseren FLJ, Mach F, Smulders YM et al (2021) 2021 ESC guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 42:3227–3337

    Article  PubMed  Google Scholar 

  24. SCORE2 working group and ESC Cardiovascular risk collaboration (2021) SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in europe. Eur Heart J 42:2439–2454

    Article  CAS  Google Scholar 

  25. Hageman SHJ, McKay AJ, Ueda P et al (2022) Estimation of recurrent atherosclerotic cardiovascular event risk in patients with established cardiovascular disease: the updated SMART2 algorithm. Eur Heart J. https://doi.org/10.1093/eurheartj/ehac056

    Article  PubMed  Google Scholar 

  26. Kazi DS, Penko J, Coxson PG et al (2019) Cost-effectiveness of alirocumab: a just-in-time analysis based on the ODYSSEY outcomes trial. Ann Intern Med 170:221–229

    Article  PubMed  Google Scholar 

  27. Fonarow GC, Keech AC, Pedersen TR et al (2017) Cost-effectiveness of evolocumab therapy for reducing cardiovascular events in patients with atherosclerotic cardiovascular disease. JAMA Cardiol 2:1069–1078

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sabatine MS, De Ferrari GM, Giugliano RP et al (2018) Clinical benefit of evolocumab by severity and extent of coronary artery disease: analysis from Fourier. Circulation 138:756–766

    Article  CAS  PubMed  Google Scholar 

  29. Jukema JW, Szarek M, Zijlstra LE et al (2019) Alirocumab in patients with polyvascular disease and recent acute coronary syndrome: odyssey outcomes trial. J Am Coll Cardiol 74:1167–1176

    Article  CAS  PubMed  Google Scholar 

  30. Bhatt DL, Briggs AH, Reed SD et al (2020) Cost-effectiveness of alirocumab in patients with acute coronary syndromes: the odyssey outcomes trial. J Am Coll Cardiol 75:2297–2308

    Article  CAS  PubMed  Google Scholar 

  31. Landmesser U, Lindgren P, Hagström E et al (2022) Cost-effectiveness of proprotein convertase subtilisin/kexin type 9 inhibition with evolocumab in patients with a history of myocardial infarction in Sweden. Eur Heart J Qual Care Clin Outcomes 8:31–38

    Article  PubMed  Google Scholar 

  32. National Institute for Health and Care Excellence (2016) Alirocumab for treating primary hypercholesterolaemia and mixed dyslipidaemia. Technology appraisal guidance. www.nice.org.uk/guidance/ta393. Zugegriffen: 28.02.2022

  33. National Institute for Health and Care Excellence (NICE) (2016) Evolocumab for treating primary hypercholesterolaemia and mixed dyslipidaemia. Technology appraisal guidance. www.nice.org.uk/guidance/ta394. Zugegriffen: 28.02.2022

  34. Dressel A, Schmidt B, Schmidt N et al (2019) Cost effectiveness of lifelong therapy with PCSK9 inhibitors for lowering cardiovascular events in patients with stable coronary artery disease: insights from the Ludwigshafen risk and cardiovascular health cohort. Vascul Pharmacol 120:106566

    Article  CAS  PubMed  Google Scholar 

  35. Lin GA, Kazi DS, Jih J et al (2022) Inclisiran and bempedoic acid for patients with heterozygous familial hypercholesterolemia and for secondary prevention of ASCVD: effectiveness and value. Final evidence report. Institute for Clinical and Economic Review (ICER)

  36. National Institute for Health and Care Excellence (2021) Inclisiran for treating primary hypercholesterolaemia or mixed dyslipidaemia. Technology appraisal guidance. www.nice.org.uk/guidance/ta733. Zugegriffen: 22.02.2022

  37. Byrne P, Demasi M, Smith SM (2021) NICE guidance on inclisiran should be reconsidered. Br Med J 375:n2462

    Article  Google Scholar 

  38. Pinkosky SL, Newton RS, Day EA et al (2016) Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL‑C and attenuates atherosclerosis. Nat Commun 7:13457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ballantyne CM, Laufs U, Ray KK et al (2020) Bempedoic acid plus ezetimibe fixed-dose combination in patients with hypercholesterolemia and high CVD risk treated with maximally tolerated statin therapy. Eur J Prev Cardiol 27:593–603

    Article  PubMed  Google Scholar 

  40. Nicholls SJ, Lincoff AM, Bays HE et al (2021) Rationale and design of the CLEAR-outcomes trial: evaluating the effect of bempedoic acid on cardiovascular events in patients with statin intolerance. Am Heart J 235:104–112

    Article  CAS  PubMed  Google Scholar 

  41. Ference BA, Ray KK, Catapano AL et al (2019) Mendelian randomization study of ACLY and cardiovascular disease. N Engl J Med 380:1033–1042

    Article  CAS  PubMed  Google Scholar 

  42. Silverman MG, Ference BA, Im K et al (2016) Association between lowering LDL‑C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA 316:1289–1297

    Article  CAS  PubMed  Google Scholar 

  43. Blaum C, Brunner FJ, Goßling A et al (2021) Target populations and treatment cost for bempedoic acid and PCSK9 inhibitors: a simulation study in a contemporary CAD cohort. Clin Ther 43:1583–1600

    Article  CAS  PubMed  Google Scholar 

  44. National Institute for Health and Care Excellence (NICE) (2021) Bempedoic acid with ezetimibe for treating primary hypercholesterolaemia or mixed dyslipidaemia. Technology appraisal guidance. www.nice.org.uk/guidance/ta694. Zugegriffen: 22.02.2022

  45. Mason RP, Libby P, Bhatt DL (2020) Emerging mechanisms of cardiovascular protection for the omega‑3 fatty acid eicosapentaenoic acid. Arterioscler Thromb Vasc Biol 40:1135–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Weintraub WS, Bhatt DL, Zhang Z et al (2022) Cost-effectiveness of icosapent ethyl for high-risk patients with hypertriglyceridemia despite statin treatment. JAMA Netw Open 5:e2148172

    Article  PubMed  PubMed Central  Google Scholar 

  47. Synnott PG, McQueen RB, Ollendorf DA et al (2020) The effectiveness and value of rivaroxaban and icosapent ethyl as additive therapies for cardiovascular disease. J Manag Care Spec Pharm 26:782–785

    PubMed  Google Scholar 

  48. Bostrom JA, Beckman JA, Berger JS (2021) Summoning STRENGTH to question the placebo in REDUCE-IT. Circulation 144:407–409

    Article  PubMed  Google Scholar 

  49. Nicholls SJ, Lincoff AM, Garcia M et al (2020) Effect of high-dose omega‑3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical trial. JAMA 324:2268–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nissen SE, Lincoff AM, Wolski K et al (2021) Association between achieved n‑3 fatty acid levels and major adverse cardiovascular outcomes in patients with high cardiovascular risk: a secondary analysis of the STRENGTH trial. JAMA Cardiol 6:1–8

    Article  PubMed Central  Google Scholar 

  51. Butala NM, Virani SS, Isaza N et al (2021) Abstract 10315: Cost-effectiveness of bempedoic acid in patients with established atherosclerotic cardiovascular disease. Circulation 144:A10315

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Waldeyer.

Ethics declarations

Interessenkonflikt

C. Blaum und N. Arnold geben an, dass kein Interessenkonflikt besteht. C. Waldeyer erhielt Vortrags- und Beratungshonorare von Amgen, AstraZeneca, Daiichi Sankyo, Novartis und Sanofi. Er erhielt wissenschaftliche Fördermittel von Pfizer im Rahmen des ASPIRE Cardiovascular Grant Award.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blaum, C., Arnold, N. & Waldeyer, C. Kosten-Nutzen-Analyse neuer Lipidsenker. Herz 47, 236–243 (2022). https://doi.org/10.1007/s00059-022-05116-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-022-05116-8

Schlüsselwörter

Keywords

Navigation