Skip to main content
Log in

PCSK9-Hemmung – ein Update

Update on PCSK9 inhibition

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Die therapeutische Senkung des LDL(„low-density lipoprotein“)-Cholesterins ist einer der effektivsten Maßnahmen in der kardiovaskulären Prävention. Neben der oralen Therapie mit Statinen, Ezetimib und Bempedoinsäure haben sich subkutan applizierte Inhibitoren der Proproteinkonvertase Subtilisin/Kexin Typ 9 (PCSK9) als weitere Säule der lipidsenkenden Therapie etabliert. Die alle 2 bis 4 Wochen subkutan zu verabreichenden Antikörper Evolocumab und Alirocumab senken das LDL-Cholesterin unabhängig von der Vorbehandlung um rund 60 % bei sehr guter Verträglichkeit. Für beide Wirkstoffe liegen positive Endpunktstudien vor. Ein neues Prinzip zur PCSK9-Inhibition ist die RNA-Interferenz, welche mit dem Wirkstoff Inclisiran genutzt wird. Bei Inclisiran handelt es sich um ein doppelsträngiges modifiziertes RNA-Molekül, welches die mRNA von PCSK9 neutralisiert und damit die PCSK9-Proteinsynthese intrazellulär hemmt. Inclisiran muss nur halbjährlich appliziert werden. Die Endpunktstudie ORION‑4 läuft gegenwärtig. Die Verschreibung von PCSK9-Hemmern ist in Deutschland durch einen Beschluss des Gemeinsamen Bundesausschusses reglementiert. Neue Strategien zur PCSK9-Hemmung sind in Entwicklung und umfassen u. a. oral verfügbare Wirkstoffe und tierexperimentelle Konzepte zur Gentherapie, welche sich in unterschiedlichen Stadien der Prüfung befinden.

Abstract

Lowering of low-density lipoprotein (LDL) cholesterol represents one of the most effective interventions in cardiovascular prevention. Besides the oral treatment with statins, ezetimibe and bempedoic acid, subcutaneously administered inhibitors of proprotein convertase subtilisin-kexin type 9 (PCSK9) have been established as further cornerstones of lipid-lowering treatment. The antibodies evolocumab and alirocumab are administered subcutaneously every 2–4 weeks and lower LDL cholesterol by around 60%, independent of pre-treatment with very good tolerability. Both drugs successfully reduced cardiovascular endpoints in large outcome trials. A novel principle of PCSK9 inhibition is RNA interference, which is exploited by the novel compound inclisiran. Inclisiran is a double-stranded modified RNA molecule, which neutralizes the mRNA of PCSK9 and thus inhibits PCSK9 protein synthesis intracellularly. Inclisiran only needs to be administered every 6 months. The cardiovascular outcome trial ORION‑4 is currently ongoing. In Germany, prescription of PCSK9 inhibitors is regulated by the decision of the Federal Joint Committee. Novel strategies to inhibit PCSK9 function are under development and include orally available drugs and animal experiment concepts on gene editing, which are in different states of evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Ference BA, Ginsberg HN, Graham I et al (2017) Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European atherosclerosis society consensus panel. Eur Heart J 38:2459–2472. https://doi.org/10.1093/eurheartj/ehx144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Katzmann JL, Mahfoud F, Böhm M et al (2019) Association of medication adherence and depression with the control of low-density lipoprotein cholesterol and blood pressure in patients at high cardiovascular risk. Patient Prefer Adherence 13:9–19. https://doi.org/10.2147/PPA.S182765

    Article  PubMed  Google Scholar 

  3. Seidah NG, Benjannet S, Wickham L et al (2003) The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci U S A 100:928–933. https://doi.org/10.1073/pnas.0335507100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abifadel M, Varret M, Rabès J‑P et al (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34:154–156. https://doi.org/10.1038/ng1161

    Article  CAS  PubMed  Google Scholar 

  5. Cohen JC, Boerwinkle E, Jr. Mosley TH et al (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354:1264–1272. https://doi.org/10.1056/NEJMoa054013

    Article  CAS  PubMed  Google Scholar 

  6. Ference BA, Robinson JG, Brook RD et al (2016) Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med 375:2144–2153. https://doi.org/10.1056/NEJMoa1604304

    Article  CAS  PubMed  Google Scholar 

  7. Lagace TA, Curtis DE, Garuti R et al (2006) Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of parabiotic mice. J Clin Invest 116:2995–3005. https://doi.org/10.1172/JCI29383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Glerup S, Schulz R, Laufs U et al (2017) Physiological and therapeutic regulation of PCSK9 activity in cardiovascular disease. Basic Res Cardiol 112:32. https://doi.org/10.1007/s00395-017-0619-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ridker PM, Tardif J‑C, Amarenco P et al (2017) Lipid-reduction variability and antidrug-antibody formation with bococizumab. N Engl J Med 376:1517–1526. https://doi.org/10.1056/NEJMoa1614062

    Article  CAS  PubMed  Google Scholar 

  10. Sabatine MS (2019) PCSK9 inhibitors: clinical evidence and implementation. Nat Rev Cardiol 16:155–165. https://doi.org/10.1038/s41569-018-0107-8

    Article  CAS  PubMed  Google Scholar 

  11. Katzmann JL, Gouni-Berthold I, Laufs U (2020) PCSK9 inhibition: insights from clinical trials and future prospects. Front Physiol 11:595819. https://doi.org/10.3389/fphys.2020.595819

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sabatine MS, Giugliano RP, Keech AC et al (2017) Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 376:1713–1722. https://doi.org/10.1056/NEJMoa1615664

    Article  CAS  PubMed  Google Scholar 

  13. Giugliano RP, Pedersen TR, Park J‑G et al (2017) Clinical efficacy and safety of achieving very low LDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab: a prespecified secondary analysis of the FOURIER trial. Lancet 390:1962–1971. https://doi.org/10.1016/S0140-6736(17)32290-0

    Article  CAS  PubMed  Google Scholar 

  14. Giugliano RP, Mach F, Zavitz K et al (2017) Cognitive function in a randomized trial of evolocumab. N Engl J Med 377:633–643. https://doi.org/10.1056/NEJMoa1701131

    Article  CAS  PubMed  Google Scholar 

  15. Gencer B, Mach F, Guo J et al (2020) Cognition after lowering LDL-cholesterol with evolocumab. J Am Coll Cardiol 75:2283–2293. https://doi.org/10.1016/j.jacc.2020.03.039

    Article  CAS  PubMed  Google Scholar 

  16. Marston NA, Kamanu FK, Nordio F et al (2020) Predicting benefit from evolocumab therapy in patients with atherosclerotic disease using a genetic risk score: results from the FOURIER trial. Circulation 141:616–623. https://doi.org/10.1161/CIRCULATIONAHA.119.043805

    Article  PubMed  Google Scholar 

  17. Sabatine MS, De Ferrari GM, Giugliano RP et al (2018) Clinical benefit of evolocumab by severity and extent of coronary artery disease: analysis from FOURIER. Circulation 138:756–766. https://doi.org/10.1161/CIRCULATIONAHA.118.034309

    Article  CAS  PubMed  Google Scholar 

  18. Bonaca MP, Nault P, Giugliano RP et al (2018) Low-density lipoprotein cholesterol lowering with evolocumab and outcomes in patients with peripheral artery disease: insights from the FOURIER trial. Circulation 137:338–350. https://doi.org/10.1161/CIRCULATIONAHA.117.032235

    Article  CAS  PubMed  Google Scholar 

  19. Bohula EA, Giugliano RP, Leiter LA et al (2018) Inflammatory and cholesterol risk in the FOURIER trial. Circulation 138:131–140. https://doi.org/10.1161/CIRCULATIONAHA.118.034032

    Article  CAS  PubMed  Google Scholar 

  20. Charytan DM, Sabatine MS, Pedersen TR et al (2019) Efficacy and safety of evolocumab in chronic kidney disease in the FOURIER trial. J Am Coll Cardiol 73:2961–2970. https://doi.org/10.1016/j.jacc.2019.03.513

    Article  CAS  PubMed  Google Scholar 

  21. O’Donoghue ML, Fazio S, Giugliano RP et al (2018) Lipoprotein(a), PCSK9 inhibition and cardiovascular risk: insights from the FOURIER trial. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.118.037184

    Article  Google Scholar 

  22. ClinicalTrials.gov (2019) Effect of evolocumab in patients at high cardiovascular risk without prior myocardial infarction or stroke (VESALIUS-CV). https://www.clinicaltrials.gov/ct2/show/NCT03872401. Zugegriffen: 3. Jan. 2022

  23. Schwartz GG, Steg PG, Szarek M et al (2018) Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med 379:2097–2107. https://doi.org/10.1056/NEJMoa1801174

    Article  CAS  PubMed  Google Scholar 

  24. Jukema JW, Szarek M, Zijlstra LE et al (2019) Alirocumab in patients with polyvascular disease and recent acute coronary syndrome: ODYSSEY OUTCOMES trial. J Am Coll Cardiol 74:1167–1176. https://doi.org/10.1016/j.jacc.2019.03.013

    Article  CAS  PubMed  Google Scholar 

  25. Ray KK, Colhoun HM, Szarek M et al (2019) Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diabetes Endocrinol 7:618–628. https://doi.org/10.1016/S2213-8587(19)30158-5

    Article  CAS  PubMed  Google Scholar 

  26. Damask A, Steg PG, Schwartz GG et al (2020) Patients with high genome-wide polygenic risk scores for coronary artery disease may receive greater clinical benefit from alirocumab treatment in the ODYSSEY OUTCOMES trial. Circulation 141:624–636. https://doi.org/10.1161/CIRCULATIONAHA.119.044434

    Article  PubMed  Google Scholar 

  27. Schwartz GG, Szarek M, Bittner VA et al (2021) Lipoprotein(a) and benefit of PCSK9 inhibition in patients with nominally controlled LDL cholesterol. J Am Coll Cardiol 78:421–433. https://doi.org/10.1016/j.jacc.2021.04.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mach F, Baigent C, Catapano AL et al (2020) 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 41:111–188. https://doi.org/10.1093/eurheartj/ehz455

    Article  PubMed  Google Scholar 

  29. Gemeinsamer Bundesausschuss (2016) Änderung der Arzneimittel-Richtlinie (AM-RL): Anlage III – Übersicht über Verordnungseinschränkungen und -ausschlüsse, Evolocumab. https://www.g-ba.de/downloads/40-268-3796/2016-06-02_AM-RL-III_Evolocumab_ZD.pdf. Zugegriffen: 3. Jan. 2022

  30. Parhofer KG, von Stritzky B, Pietschmann N et al (2019) PEARL: a non-interventional study of real-world alirocumab use in German clinical practice. Drugs Real World Outcomes 6:115–123. https://doi.org/10.1007/s40801-019-0158-0

    Article  PubMed  PubMed Central  Google Scholar 

  31. Katzmann JL, Packard CJ, Chapman MJ et al (2020) Targeting RNA with antisense oligonucleotides and small interfering RNA in dyslipidemias. J Am Coll Cardiol 76:563–579. https://doi.org/10.1016/j.jacc.2020.05.070

    Article  CAS  PubMed  Google Scholar 

  32. ClinicalTrials.gov (2018) A double-blind randomized placebo-controlled trial assessing the effects of inclisiran on clinical outcomes among people with atherosclerotic cardiovascular disease (ORION-4). https://clinicaltrials.gov/ct2/show/NCT03705234. Zugegriffen: 3. Jan. 2022

  33. Seidah NG, Prat A, Pirillo A et al (2019) Novel strategies to target proprotein convertase subtilisin kexin 9: beyond monoclonal antibodies. Cardiovasc Res 115:510–518. https://doi.org/10.1093/cvr/cvz003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Catapano AL, Pirillo A, Norata GD (2020) New pharmacological approaches to target PCSK9. Curr Atheroscler Rep 22:24. https://doi.org/10.1007/s11883-020-00847-7

    Article  CAS  PubMed  Google Scholar 

  35. Gennemark P, Walter K, Clemmensen N et al (2021) An oral antisense oligonucleotide for PCSK9 inhibition. Sci Transl Med. https://doi.org/10.1126/scitranslmed.abe9117

    Article  PubMed  Google Scholar 

  36. Mullard A (2022) Merck readies oral, macrocyclic PCSK9 inhibitor for phase II test. Nat Rev Drug Discov 21:9. https://doi.org/10.1038/d41573-021-00195-4

    Article  CAS  PubMed  Google Scholar 

  37. American Heart Association (2021) Oral PCSK9 inhibitor found to be safe, effective to lower cholesterol, in first human trial. https://newsroom.heart.org/news/oral-pcsk9-inhibitor-found-to-be-safe-effective-to-lower-cholesterol-in-first-human-trial. Zugegriffen: 5. Jan. 2022

  38. Musunuru K, Chadwick AC, Mizoguchi T et al (2021) In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593:429–434. https://doi.org/10.1038/s41586-021-03534-y

    Article  CAS  PubMed  Google Scholar 

  39. Katzmann JL, Cupido AJ, Laufs U (2022) Gene therapy targeting PCSK9. Metabolites. https://doi.org/10.3390/metabo12010070

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Danksagung

Die Autoren danken Isabell Katzmann für die Erstellung der Abbildungen 1 und 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius L. Katzmann.

Ethics declarations

Interessenkonflikt

J.L. Katzmann gibt an, dass kein Interessenkonflikt besteht. F. Custodis, S.H. Schirmer und U. Laufs haben Honorare für Vorträge von Amgen, Daiichi Sankyo, Novartis und Sanofi erhalten.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

Scan QR code & read article online

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katzmann, J.L., Custodis, F., Schirmer, S.H. et al. PCSK9-Hemmung – ein Update. Herz 47, 196–203 (2022). https://doi.org/10.1007/s00059-022-05112-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-022-05112-y

Schlüsselwörter

Keywords

Navigation