Skip to main content
Log in

Nutzen der kardialen Magnetresonanzdiagnostik für Patienten mit Herzrhythmusstörungen

Von der Risikostratifizierung bis zur Intervention

Benefits of cardiac magnetic resonance diagnostics in patients with heart rhythm disorders

From risk stratification to interventional procedures

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Die kardiale Magnetresonanztomographie (CMR) zählt mittlerweile zu den etablierten diagnostischen Verfahren in der Abklärung kardialer Krankheitsbilder. In der heutigen klinischen Elektrophysiologie ermöglicht die Bildgebungsmethode abseits der kardialen Basisdiagnostik bei Patienten vor interventionellen Eingriffen die Erstellung von dreidimensionalen Modellen der kardialen Zielstrukturen des geplanten ablativen Verfahrens, was Effizienz und Sicherheit des Eingriffs maßgeblich verbessern kann. Des Weiteren besitzt die CMR einen wesentlichen Stellenwert in der Risikostratifizierung im Rahmen der ICD(implantierbarer Kardioverter-Defibrillator)-Evaluation. Neben einer genauen Bestimmung der Pumpfunktion sind dank der detaillierten Gewebecharakterisierung die Darstellung und Quantifizierung von fibrotischen Arealen bzw. Narben als potenziellen arrhythmogenen Triggern möglich. Diese anatomische Zuordnung erlaubt zudem eine erhöhte Treffsicherheit im Rahmen der Ablation von substratgebundenen Arrhythmien. Im Vergleich hierzu stellt die interventionelle CMR als direkte Schnittstelle zwischen invasiver Elektrophysiologie und CMR-Bildgebung ein noch recht neues Betätigungsfeld dar. Erste klinische Erfahrungen im Bereich der Ablation von typischem Vorhofflattern konnten nicht nur die Machbarkeit des Konzepts belegen, sondern auch die klaren Vorteile einer bildgebungsgesteuerten elektrophysiologischen Prozedur erkennen lassen.

Abstract

Cardiac magnetic resonance imaging (cMRI) now rates among the established diagnostic procedures for the clarification of cardiac disease patterns. In modern clinical electrophysiology, apart from providing basic cardiac diagnostics of patients prior to interventional procedures, the imaging method enables the three-dimensional reconstruction of cardiac target structures of the planned ablation procedure, which can significantly improve the safety and efficacy of the intervention. Furthermore, cMRI has a high significance with respect to risk stratification during implantable cardioverter defibrillator (ICD) evaluation. In addition to an exact determination of ventricular function, its capability for detailed tissue characterization enables the visualization and quantification of fibrotic lesions and scar tissue as potential arrhythmogenic triggers. This anatomic assignment also enables an increased accuracy of the ablation of substrate-based arrhythmia. In comparison to this the interventional cMRI as a direct interface between cMRI and invasive electrophysiology represents a comparably new field of application. Initial clinical experiences in the field of ablation of typical atrial fibrillation could not only confirm the feasibility of the concept but also enabled recognition of the clear advantages of an imaging-guided electrophysiological procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Hindricks G, Potpara T, Dagres N et al (2021) 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J 42(5):373–498. https://doi.org/10.1093/eurheartj/ehaa612

    Article  PubMed  Google Scholar 

  2. Haissaguerre M, Jais P, Shah DC et al (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339(10):659–666. https://doi.org/10.1056/NEJM199809033391003

    Article  CAS  PubMed  Google Scholar 

  3. Chen J, Yang ZG, Xu HY et al (2017) Assessments of pulmonary vein and left atrial anatomical variants in atrial fibrillation patients for catheter ablation with cardiac CT. Eur Radiol 27(2):660–670. https://doi.org/10.1007/s00330-016-4411-6

    Article  PubMed  Google Scholar 

  4. Mansour M, Refaat M, Heist EK et al (2006) Three-dimensional anatomy of the left atrium by magnetic resonance angiography: implications for catheter ablation for atrial fibrillation. J Cardiovasc Electrophysiol 17(7):719–723. https://doi.org/10.1111/j.1540-8167.2006.00491.x

    Article  PubMed  Google Scholar 

  5. Oebel S, Paetsch I, Stegmann C et al (2019) Combined single-session cardiovascular magnetic resonance: stress perfusion and three-dimensional pulmonary vein angiography for stratification of atrial fibrillation patients with chest pain syndromes prior to catheter ablation. Europace 21(12):1809–1816. https://doi.org/10.1093/europace/euz248

    Article  PubMed  Google Scholar 

  6. Dong J, Dickfeld T, Dalal D et al (2006) Initial experience in the use of integrated electroanatomic mapping with three-dimensional MR/CT images to guide catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 17(5):459–466. https://doi.org/10.1111/j.1540-8167.2006.00425.x

    Article  PubMed  Google Scholar 

  7. Rostamian A, Narayan SM, Thomson L et al (2014) The incidence, diagnosis, and management of pulmonary vein stenosis as a complication of atrial fibrillation ablation. J Interv Card Electrophysiol 40(1):63–74. https://doi.org/10.1007/s10840-014-9885-z

    Article  PubMed  Google Scholar 

  8. Schoene K, Arya A, Jahnke C et al (2018) Acquired pulmonary vein stenosis after radiofrequency ablation for atrial fibrillation: single-center experience in catheter Interventional treatment. JACC Cardiovasc Interv 11(16):1626–1632. https://doi.org/10.1016/j.jcin.2018.05.016

    Article  PubMed  Google Scholar 

  9. Kluge A, Dill T, Ekinci O et al (2004) Decreased pulmonary perfusion in pulmonary vein stenosis after radiofrequency ablation: assessment with dynamic magnetic resonance perfusion imaging. Chest 126(2):428–437. https://doi.org/10.1378/chest.126.2.428

    Article  PubMed  Google Scholar 

  10. Oakes RS, Badger TJ, Kholmovski EG et al (2009) Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation 119(13):1758–1767. https://doi.org/10.1161/CIRCULATIONAHA.108.811877

    Article  PubMed  PubMed Central  Google Scholar 

  11. Allessie M, Ausma J, Schotten U (2002) Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res 54(2):230–246. https://doi.org/10.1016/s0008-6363(02)00258-4

    Article  CAS  PubMed  Google Scholar 

  12. Marrouche NF, Wilber D, Hindricks G et al (2014) Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA 311(5):498–506. https://doi.org/10.1001/jama.2014.3

    Article  CAS  PubMed  Google Scholar 

  13. Marrouche NF, Greene T, Dean JM et al (2021) Efficacy of LGE-MRI-guided fibrosis ablation versus conventional catheter ablation of atrial fibrillation: The DECAAF II trial: study design. J Cardiovasc Electrophysiol 32(4):916–924. https://doi.org/10.1111/jce.14957

    Article  PubMed  Google Scholar 

  14. Appelbaum E, Manning WJ (2014) Left atrial fibrosis by late gadolinium enhancement cardiovascular magnetic resonance predicts recurrence of atrial fibrillation after pulmonary vein isolation: do you see what I see? Circ Arrhythm Electrophysiol 7(1):2–4. https://doi.org/10.1161/CIRCEP.114.001354

    Article  PubMed  Google Scholar 

  15. John RM, Tedrow UB, Koplan BA et al (2012) Ventricular arrhythmias and sudden cardiac death. Lancet 380(9852):1520–1529. https://doi.org/10.1016/S0140-6736(12)61413-5

    Article  PubMed  Google Scholar 

  16. Oebel S, Dinov B, Arya A et al (2017) ECG morphology of premature ventricular contractions predicts the presence of myocardial fibrotic substrate on cardiac magnetic resonance imaging in patients undergoing ablation. J Cardiovasc Electrophysiol 28(11):1316–1323. https://doi.org/10.1111/jce.13309

    Article  PubMed  Google Scholar 

  17. Kuck KH, Schaumann A, Eckardt L et al (2010) Catheter ablation of stable ventricular tachycardia before defibrillator implantation in patients with coronary heart disease (VTACH): a multicentre randomised controlled trial. Lancet 375(9708):31–40. https://doi.org/10.1016/S0140-6736(09)61755-4

    Article  PubMed  Google Scholar 

  18. Muser D, Santangeli P, Castro SA et al (2016) Long-term outcome after catheter ablation of ventricular tachycardia in patients with nonischemic dilated cardiomyopathy. Circ Arrhythm Electrophysiol. https://doi.org/10.1161/CIRCEP.116.004328

    Article  PubMed  Google Scholar 

  19. Ghanbari H, Baser K, Yokokawa M et al (2014) Noninducibility in postinfarction ventricular tachycardia as an end point for ventricular tachycardia ablation and its effects on outcomes: a meta-analysis. Circ Arrhythm Electrophysiol 7(4):677–683. https://doi.org/10.1161/CIRCEP.113.001404

    Article  PubMed  Google Scholar 

  20. Graham AJ, Orini M, Lambiase PD (2017) Limitations and challenges in mapping ventricular tachycardia: new technologies and future directions. Arrhythm Electrophysiol Rev 6(3):118–124. https://doi.org/10.15420/aer.2017.20.1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dawson DK, Hawlisch K, Prescott G et al (2013) Prognostic role of CMR in patients presenting with ventricular arrhythmias. JACC Cardiovasc Imaging 6(3):335–344. https://doi.org/10.1016/j.jcmg.2012.09.012

    Article  PubMed  Google Scholar 

  22. Perez-David E, Arenal A, Rubio-Guivernau JL et al (2011) Noninvasive identification of ventricular tachycardia-related conducting channels using contrast-enhanced magnetic resonance imaging in patients with chronic myocardial infarction: comparison of signal intensity scar mapping and endocardial voltage mapping. J Am Coll Cardiol 57(2):184–194. https://doi.org/10.1016/j.jacc.2010.07.043

    Article  PubMed  Google Scholar 

  23. Soto-Iglesias D, Penela D, Jauregui B et al (2020) Cardiac magnetic resonance-guided ventricular tachycardia substrate ablation. JACC Clin Electrophysiol 6(4):436–447. https://doi.org/10.1016/j.jacep.2019.11.004

    Article  PubMed  Google Scholar 

  24. Dickfeld T, Kato R, Zviman M et al (2006) Characterization of radiofrequency ablation lesions with gadolinium-enhanced cardiovascular magnetic resonance imaging. J Am Coll Cardiol 47(2):370–378. https://doi.org/10.1016/j.jacc.2005.07.070

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dinov B, Oebel S, Hilbert S et al (2018) Characteristics of the ablation lesions in cardiac magnetic resonance imaging after radiofrequency ablation of ventricular arrhythmias in relation to the procedural success. Am Heart J 204:68–75. https://doi.org/10.1016/j.ahj.2018.06.014

    Article  PubMed  Google Scholar 

  26. Russo RJ, Costa HS, Silva PD et al (2017) Assessing the risks associated with MRI in patients with a pacemaker or defibrillator. N Engl J Med 376(8):755–764. https://doi.org/10.1056/NEJMoa1603265

    Article  PubMed  Google Scholar 

  27. Padmanabhan D, Kella DK, Mehta R et al (2018) Safety of magnetic resonance imaging in patients with legacy pacemakers and defibrillators and abandoned leads. Heart Rhythm 15(2):228–233. https://doi.org/10.1016/j.hrthm.2017.10.022

    Article  PubMed  Google Scholar 

  28. Hilbert S, Weber A, Nehrke K et al (2018) Artefact-free late gadolinium enhancement imaging in patients with implanted cardiac devices using a modified broadband sequence: current strategies and results from a real-world patient cohort. Europace 20(5):801–807. https://doi.org/10.1093/europace/eux016

    Article  PubMed  Google Scholar 

  29. Hilbert S, Jahnke C, Loebe S et al (2018) Cardiovascular magnetic resonance imaging in patients with cardiac implantable electronic devices: a device-dependent imaging strategy for improved image quality. Eur Heart J Cardiovasc Imaging 19(9):1051–1061. https://doi.org/10.1093/ehjci/jex243

    Article  PubMed  Google Scholar 

  30. Theuns DA, Smith T, Hunink MG et al (2010) Effectiveness of prophylactic implantation of cardioverter-defibrillators without cardiac resynchronization therapy in patients with ischaemic or non-ischaemic heart disease: a systematic review and meta-analysis. Europace 12(11):1564–1570. https://doi.org/10.1093/europace/euq329

    Article  PubMed  PubMed Central  Google Scholar 

  31. Connolly SJ, Hallstrom AP, Cappato R et al (2000) meta-analysis of the implantable cardioverter defibrillator secondary prevention trials. AVID, CASH and CIDS studies. Antiarrhythmics vs implantable defibrillator study. Cardiac arrest study Hamburg. Canadian implantable defibrillator study. Eur Heart J 21(24):2071–2078. https://doi.org/10.1053/euhj.2000.2476

    Article  CAS  PubMed  Google Scholar 

  32. McDonagh TA, Metra M, Adamo M et al (2021) 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42(36):3599–3726. https://doi.org/10.1093/eurheartj/ehab368

    Article  CAS  Google Scholar 

  33. Pontone G, Guaricci AI, Andreini D et al (2016) Prognostic benefit of cardiac magnetic resonance over transthoracic echocardiography for the assessment of ischemic and nonischemic dilated cardiomyopathy patients referred for the evaluation of primary prevention implantable cardioverter-defibrillator therapy. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.115.004956

    Article  PubMed  Google Scholar 

  34. Di Marco A, Anguera I, Schmitt M et al (2017) Late gadolinium enhancement and the risk for ventricular arrhythmias or sudden death in dilated cardiomyopathy: systematic review and meta-analysis. JACC Heart Fail 5(1):28–38. https://doi.org/10.1016/j.jchf.2016.09.017

    Article  PubMed  Google Scholar 

  35. Kober L, Thune JJ, Nielsen JC et al (2016) Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med 375(13):1221–1230. https://doi.org/10.1056/NEJMoa1608029

    Article  PubMed  Google Scholar 

  36. Lindemann F, Oebel S, Paetsch I et al (2020) Clinical utility of cardiovascular magnetic resonance imaging in patients with implantable cardioverter defibrillators presenting with electrical instability or worsening heart failure symptoms. J Cardiovasc Magn Reson 22(1):32. https://doi.org/10.1186/s12968-020-00609-z

    Article  PubMed  PubMed Central  Google Scholar 

  37. White JA, Fine NM, Gula L et al (2012) Utility of cardiovascular magnetic resonance in identifying substrate for malignant ventricular arrhythmias. Circ Cardiovasc Imaging 5(1):12–20. https://doi.org/10.1161/CIRCIMAGING.111.966085

    Article  PubMed  Google Scholar 

  38. Guaricci AI, Masci PG, Muscogiuri G et al (2021) CarDiac magnEtic Resonance for prophylactic Implantable-cardioVerter defibrillAtor ThErapy in Non-Ischaemic dilated CardioMyopathy: an international Registry. Europace 23(7):1072–1083. https://doi.org/10.1093/europace/euaa401

    Article  PubMed  Google Scholar 

  39. Chubb H, Harrison JL, Weiss S et al (2017) Development, preclinical validation, and clinical translation of a cardiac magnetic resonance—Electrophysiology system with active catheter tracking for ablation of cardiac arrhythmia. JACC Clin Electrophysiol 3(2):89–103. https://doi.org/10.1016/j.jacep.2016.07.005

    Article  PubMed  Google Scholar 

  40. Sommer P, Grothoff M, Eitel C et al (2013) Feasibility of real-time magnetic resonance imaging-guided electrophysiology studies in humans. Europace 15(1):101–108. https://doi.org/10.1093/europace/eus230

    Article  PubMed  Google Scholar 

  41. Hilbert S, Sommer P, Gutberlet M et al (2016) Real-time magnetic resonance-guided ablation of typical right atrial flutter using a combination of active catheter tracking and passive catheter visualization in man: initial results from a consecutive patient series. Europace 18(4):572–577. https://doi.org/10.1093/europace/euv249

    Article  PubMed  Google Scholar 

  42. Paetsch I, Sommer P, Jahnke C et al (2019) Clinical workflow and applicability of electrophysiological cardiovascular magnetic resonance-guided radiofrequency ablation of isthmus-dependent atrial flutter. Eur Heart J Cardiovasc Imaging 20(2):147–156. https://doi.org/10.1093/ehjci/jey143

    Article  PubMed  Google Scholar 

  43. Tse ZT, Dumoulin CL, Clifford GD et al (2014) A 1.5T MRI-conditional 12-lead electrocardiogram for MRI and intra-MR intervention. Magn Reson Med 71(3):1336–1347. https://doi.org/10.1002/mrm.24744

    Article  PubMed  PubMed Central  Google Scholar 

  44. Schmidt EJ, Watkins RD, Zviman MM et al (2016) A magnetic resonance imaging-conditional external cardiac defibrillator for resuscitation within the magnetic resonance imaging scanner bore. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.116.005091

    Article  PubMed  PubMed Central  Google Scholar 

  45. Raval AN, Karmarkar PV, Guttman MA et al (2006) Real-time MRI guided atrial septal puncture and balloon septostomy in swine. Catheter Cardiovasc Interv 67(4):637–643. https://doi.org/10.1002/ccd.20579

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mukherjee RK, Roujol S, Chubb H et al (2018) Epicardial electroanatomical mapping, radiofrequency ablation, and lesion imaging in the porcine left ventricle under real-time magnetic resonance imaging guidance-an in vivo feasibility study. Europace 20(FI2):f254–f262. https://doi.org/10.1093/europace/eux341

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Oebel.

Ethics declarations

Interessenkonflikt

S. Oebel, C. Jahnke, G. Hindricks und I. Paetsch geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oebel, S., Jahnke, C., Hindricks, G. et al. Nutzen der kardialen Magnetresonanzdiagnostik für Patienten mit Herzrhythmusstörungen. Herz 47, 110–117 (2022). https://doi.org/10.1007/s00059-022-05105-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-022-05105-x

Schlüsselwörter

Keywords

Navigation