Skip to main content
Log in

NOD2 induces VCAM-1 and ET-1 gene expression via NF-κB in human umbilical vein endothelial cells with muramyl dipeptide stimulation

NOD2 induziert VCAM-1- und ET-1-Genexpression über NF-κB in menschlichen Nabelvenenendothelzellen mit Muramyldipeptid-Stimulation

  • Original articles
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Objectives

Endothelial dysfunction is involved in various aspects of vascular biology and different stages of cardiovascular diseases (CVDs). Nucleotide-binding oligomerization domain-containing protein (NOD) 2, a pivotal innate immune receptor for muramyl dipeptide (MDP), has been reported to be a central regulator in CVDs. Previously, we reported that NOD2 played a leading role in MDP-triggered oxidative stress in endothelial cells (ECs). However, whether NOD2 participates in the regulatory mechanism of vascular cell adhesion molecule‑1 (VCAM-1) and endothelin‑1 (ET-1) expression was not elucidated.

Methods

Human umbilical vein endothelial cells (HUVECs) were stimulated with MDP for 12 h. mRNA expression of VCAM‑1 and ET‑1 was detected using real time polymerase chain reaction (PCR). Scrambled control small interfering RNA (siRNA) and NOD2 siRNA were transfected into HUVECs using Lipofectamine 2000 reagent (Invitrogen, Waltham, MA, USA). Furthermore, pyrrolidine dithiocarbamate was adopted to investigate the effect of nuclear factor κB (NF-κB) on NOD2-mediated VCAM‑1 and ET‑1 gene expression in MDP-treated HUVECs.

Results

Data showed that MDP significantly increased VCAM‑1 and ET‑1 mRNA expression, which was dependent on NOD2. In addition, NF-κB inhibition suppressed NOD2-mediated gene expression of VCAM‑1 and ET‑1.

Conclusion

Collectively, we confirmed NOD2 aggravated VCAM‑1 and ET‑1 gene expression through NF-κB in HUVECs treated with MDP.

Zusammenfassung

Zielsetzungen

Eine endotheliale Dysfunktion ist an vielfältigen Aspekten der Gefäßbiologie und an unterschiedlichen Stadien von Herz-Kreislauf-Erkrankungen (CVDs) beteiligt. NOD2 („nucleotide-binding oligomerization domain-containing protein“), ein entscheidender angeborener Immunrezeptor für Muramyldipeptid (MDP), wurde als zentraler Regulator bei Herz-Kreislauf-Erkrankungen beschrieben. In früheren Veröffentlichungen haben wir dargelegt, dass NOD2 eine wesentliche Funktion beim MDP-getriggerten oxidativen Stress in Endothelzellen (ECs) hat. Ob NOD2 jedoch am Regulationsmechanismus der Expression von VCAM‑1 („vascular cell adhesion molecule-1“) und ET‑1 („endothelin-1“) beteiligt ist, ließ sich nicht eindeutig klären.

Methoden

Humane Nabelvenenendothelzellen (HUVECs) wurden 12 h lang mit MDP stimuliert. Wir konnten die mRNA-Expression von VCAM‑1 und ET‑1 mittels Real-time-PCR (Polymerasekettenreaktion) nachweisen. „Scrambled control“ siRNA („small interfering RNA“) und NOD2-siRNA wurden mit Lipofectamine 2000-Reagenz (Invitrogen, Waltham/MA, USA) in HUVECs transfiziert. Ferner wurde Pyrrolidindithiocarbamat eingesetzt, um die Wirkung des nukleären Faktors κB (NF-κB) auf die NOD2-vermittelte VCAM-1- und ET-1-Genexpression in MDP-vorbehandelten HUVECs zu untersuchen.

Ergebnisse

Die Befunde zeigten, dass MDP die von NOD2 abhängige VCAM-1- und ET-1-mRNA-Expression signifikant erhöhte. Darüber hinaus supprimerte die NF-κB-Inhibition die NOD2-vermittelte Genexpression von VCAM‑1 und ET‑1.

Schlussfolgerung

Insgesamt bestätigten wir die durch NOD2 beeinträchtigte VCAM-1- und ET-1-Genexpression mittels NF-κB in mit MDP vorbehandelten HUVECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Saeedf A, Dabhadkar K, Virani SS et al (2018) Cardiovascular disease prevention: training opportunities, the challenges, and future directions. Curr Atheroscler Rep 20(7):35

    Article  Google Scholar 

  2. Ma LY, Wang W, Wu YZ et al (2018) A12514 outline of the report on cardiovascular diseases in China. J Hypertens 36:e322

    Article  Google Scholar 

  3. Chen L, Kong LJ, Wei XB et al (2019) β‑arrestin 2 negatively regulates NOD2 signalling pathway through association with TRAF6 in microglia after cerebral ischaemia/reperfusion injury. J Cell Mol Med 23(5):3325–3335

    Article  CAS  Google Scholar 

  4. Stefano DA, Ricciardolo FLM, Caramori G et al (2017) Bronchial inflammation and bacterial load in stable COPD is associated with TLR4 overexpression. Eur Respir J 49(5):1602006

    Article  Google Scholar 

  5. Liu HQ, Zhang XY, Edfeldt K et al (2013) NOD2-mediated innate immune signaling regulates the eicosanoids in atherosclerosis. Arterioscler Thromb Vasc Biol 33:2193–2201

    Article  CAS  Google Scholar 

  6. Kong LJ, Liu XQ, Xue Y et al (2018) Muramyl dipeptide induces reactive oxygen species generation through the NOD2/COX-2/NOX4 signaling pathway in human umbilical vein endothelial cells. J Cardiovasc Pharmacol 71(6):352–358

    Article  CAS  Google Scholar 

  7. Huiqing L, Xinbing W, Lingjun K et al (2015) NOD2 is involved in the inflammatory response after cerebral ischemia-reperfusion injury and triggers NADPH oxidase 2‑derived reactive oxygen species. Int J Biol Sci 11(5):525–535

    Article  Google Scholar 

  8. Johansson ME, Zhang XY, Edfeldt K et al (2014) Innate immune receptor NOD2 promotes vascular inflammation and formation of lipid-rich necrotic cores in hypercholesterolemic mice. Eur J Immunol 44(10):3081–3092

    Article  CAS  Google Scholar 

  9. Ohlsson C, Nigro G, Boneca IG et al (2017) Regulation of bone mass by the gut microbiota is dependent on NOD1 and NOD2 signaling. Cell Immunol 317:55–58

    Article  CAS  Google Scholar 

  10. Witkowski M, Landmesser U, Rauch U (2016) Tissue factor as a link between inflammation and coagulation. Trends Cardiovasc Med 26(4):297–303

    Article  CAS  Google Scholar 

  11. van Hinsbergh VWM (2012) Endothelium-role in regulation of coagulation and inflammation. Semin Immunopathol 34(1):93–106

    Article  Google Scholar 

  12. Chen YW, Apostolakis S, Lip GYH (2014) Exercise-induced changes in inflammatory processes: implications for thrombogenesis in cardiovascular disease. Ann Med 46(7):439–455

    Article  CAS  Google Scholar 

  13. Habas K, Shang LJ (2018) Alterations in intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in human endothelial cells. Tissue Cell 54:139–143

    Article  CAS  Google Scholar 

  14. Pober JS, Sessa WC (2015) Inflammation and the blood microvascular system. Cold Spring Harb Perspect Biol 7(1):a16345

    Article  Google Scholar 

  15. Rostampour N, Fekri K, Hashemi-Dehkordi E et al (2017) Association between vascular endothelial markers and carotid intima-media thickness in children and adolescents with type 1 diabetes mellitus. J Clin Diagn Res 11(9):SC1–SC5

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Peter K, Weirich U, Nordt TK et al (1999) Soluble vascular cell adhesion molecule‑1 (VCAM-1) as potential marker of atherosclerosis. Thromb Haemost 82(S01):38–43

    PubMed  Google Scholar 

  17. El-Ashmawy HM, Selim FO, Hosny TAM et al (2019) Association of low serum meteorin like (Metrnl) concentrations with worsening of glucose tolerance, impaired endothelial function and atherosclerosis. Diabetes Res Clin Pract 150:57–63

    Article  CAS  Google Scholar 

  18. Di Franco M, Lucchino B, Conti F et al (2018) Asymmetric dimethyl arginine as a biomarker of atherosclerosis in rheumatoid arthritis. Mediators Inflamm 2018:ID3897295

    Article  Google Scholar 

  19. Houde M, Desbiens L, D’Orléans-Juste P (2016) Endothelin-1: biosynthesis, signaling and vasoreactivity. Adv Pharmacol 77:143–175

    Article  CAS  Google Scholar 

  20. Kowalczyk A, Kleniewska P, Kolodziejczyk M et al (2015) The role of endothelin‑1 and endothelin receptor antagonists in inflammatory response and sepsis. Arch Immunol Ther Exp 63(1):41–52

    Article  CAS  Google Scholar 

  21. Jackson AO, Regine MA, Subrata C et al (2018) Molecular mechanisms and genetic regulation in atherosclerosis. Int J Cardiol Heart Vasc 21:36–44

    PubMed  PubMed Central  Google Scholar 

  22. Gopalakrishna D, Pennington S, Karaa A et al (2016) ET‑1 stimulates superoxide production by eNOS following exposure of vascular endothelial cells to endotoxin. Shock 46(1):60–66

    Article  CAS  Google Scholar 

  23. Oh HM, Lee HJ, Seo GS et al (2005) Induction and localization of NOD2 protein in human endothelial cells. Cell Immunol 237(1):37–44

    Article  CAS  Google Scholar 

  24. Yurdagul A, Sulzmaier FJ, Chen XL et al (2016) Oxidized LDL induces FAK-dependent RSK signaling to drive NF-κB activation and VCAM‑1 expression. J Cell Sci 129(8):1580–1591

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Girardin SE, Boneca IG, Viala J et al (2003) NOD2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278:8869–8872

    Article  CAS  Google Scholar 

  26. Rubanyi GM (1993) The role of endothelium in cardiovascular homeostasis and diseases. J Cardiovasc Pharmacol 22:S1–14

    Article  CAS  Google Scholar 

  27. Haynes WG, Webb DJ (1998) Endothelin as a regulator of cardiovascular function in health and disease. J Hypertens 16(8):1081–1098

    Article  CAS  Google Scholar 

  28. Haybar H, Shahrabi S, Rezaeeyan H et al (2019) Endothelial cells: from dysfunction mechanism to pharmacological effect in cardiovascular disease. Cardiovasc Toxicol 19(1):13–22

    Article  CAS  Google Scholar 

  29. Xin Z, Chonghuai G, Chenghui Y et al (2016) NALP3-inflammasome-related gene polymorphisms in patients with prehypertension and coronary atherosclerosis. Biomed Res Int 2016:1–10

    Google Scholar 

  30. Ting JP, Duncan JA, Lei Y (2010) How the noninflammasome NLRs function in the innate immune system. Science 327:286–290

    Article  CAS  Google Scholar 

  31. Henseleit U, Steinbrink K, Sunderkötter C et al (1994) Expression of murine VCAM‑1 in vitro and in different models of inflammation in vivo: correlation with immigration of monocytes. Exp Dermatol 3(6):249–256

    Article  CAS  Google Scholar 

  32. Javeshghani D, Barhoumi T, Idris-Khodja N et al (2013) Reduced macrophage-dependent inflammation improves endothelin-1-induced vascular injury. Hypertension 62(1):112–117

    Article  CAS  Google Scholar 

  33. Idriskhodja N, Ouerd S, Trindade M et al (2017) Vascular smooth muscle cell peroxisome proliferator-activated receptor γ protects against endothelin-1-induced oxidative stress and inflammation. J Hypertens 35(7):1390–1401

    Article  CAS  Google Scholar 

  34. Sofiane O, Noureddine IK, Rehman MMO et al (2016) Lbps 01-03 endothelin‑1 overexpression exaggerates diabetes-induced endothelial dysfunction by altering oxidative stress balance. J Hypertens 34:e174

    Google Scholar 

  35. Liu J, Wang Y, Ouyang X (2014) Beyond toll-like receptors: porphyromonas gingivalis induces IL‑6, IL‑8, and VCAM‑1 expression through NOD-mediated NF-κB and ERK signaling pathways in periodontal fibroblasts. Inflammation 37(2):522–533

    Article  CAS  Google Scholar 

  36. Duerrschmidt N, Wippich N, Goettsch W et al (2000) Endothelin‑1 induces NAD(P)H oxidase in human endothelial cells. Biochem Biophys Res Commun 269(3):713–717

    Article  CAS  Google Scholar 

  37. Jiang Y, Jiang LLI, Maimaitirexiati XMZY et al (2015) Irbesartan attenuates TNF-α-induced ICAM‑1, VCAM‑1, and E‑selectin expression through suppression of NF-κB pathway in HUVECs. Eur Rev Med Pharmacol Sci 19(17):3295–3302

    CAS  PubMed  Google Scholar 

  38. Addabbo F, Nacci C, Benedictis LD et al (2011) Globular adiponectin counteracts VCAM-1-mediated monocyte adhesion via AdipoR1/NF-κB/COX‑2 signaling in human aortic endothelial cells. Am J Physiol Endocrinol Metab 301(6):E1143–E1154

    Article  CAS  Google Scholar 

  39. Huang DG, Zhao QL, Liu HF et al (2016) PPAR‑α agonist WY-14643 inhibits LPS-induced inflammation in synovial fibroblasts via NF-kB pathway. J Mol Neurosci 59(4):544–553

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The experiments were performed at Biological Medical Research Center of Zhongshan Hospital, Fudan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling-jun Kong or Qian-zhou Lv.

Ethics declarations

Conflict of interest

L.-j. Kong, Y.-n. Wang, Z. Wang and Q.-Z. Lv declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Lj., Wang, Yn., Wang, Z. et al. NOD2 induces VCAM-1 and ET-1 gene expression via NF-κB in human umbilical vein endothelial cells with muramyl dipeptide stimulation. Herz 46 (Suppl 2), 265–271 (2021). https://doi.org/10.1007/s00059-020-04996-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-020-04996-y

Keywords

Schlüsselwörter

Navigation