Skip to main content
Log in

Haarkortisol als chronischer Stressparameter bei Patienten mit akutem ST-Strecken-Hebungs-Infarkt

Hair cortisol as chronic stress parameter in patients with acute ST-segment elevation myocardial infarction

  • Originalien
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Einleitung

Stress gilt als Risikofaktor für die Entstehung kardiovaskulärer Erkrankungen. Neue Analyseverfahren erlauben die Bestimmung des Kortisols im Haar (HCC) als retrospektivem Langzeitparameter für chronischen Stress. Es ist unklar, ob Stress, objektiv gemessen anhand einer erhöhten HCC, mit der Entstehung eines akuten Myokardinfarkts assoziiert ist.

Methoden

In diese Studie wurden 40 Patienten mit der Diagnose eines akuten ST-Strecken-Hebungs-Infarkts (STEMI) im Elektrokardiogramm (EKG) eingeschlossen. 80 Patienten mit Ausschluss einer interventionspflichtigen koronaren Herzkrankheit (KHK) wurden als Kontrollgruppe herangezogen.

Ergebnisse

STEMI-Patienten zeigten im Vergleich zur Kontrollgruppe keine signifikant höhere HCC (p = 0,846), ebenso bestand keine Korrelation zum Ausmaß eines Myokardinfarkts (p = 0,701, r = 0,038). Zusammenhänge zeigten sich zwischen der HCC, einem Diabetes mellitus (p = 0,046; Odds Ratio [OR] = 6,346), einer niedrigen HDL(„high-density lipoprotein“)-Cholesterin-Konzentration (p = 0,107) sowie HbA1c(Hämoglobin A1c)-Konzentration (p = 0,083; r = 0,236). Weiterhin stellten sich ein Zusammenhang zwischen einer erhöhten HCC und chronischer Herzinsuffizienz (p = 0,110) sowie Assoziationen zur RDW(„red blood cell distribution width“)-Konzentration (p = 0,005, r = 0,293) dar.

Schlussfolgerungen

Die vorliegenden Ergebnisse zeigen, dass Patienten mit akutem Myokardinfarkt im Vergleich zur Kontrollgruppe keine signifikant höheren Werte der HCC aufwiesen, jedoch langfristige metabolische Veränderungen sowie eine fortgeschrittene chronische Herzinsuffizienz Stressfaktoren für den Organismus zu sein scheinen und den Kortisolspiegel im Haar steigern.

Abstract

Introduction

Stress is a risk factor for the development of cardiovascular diseases. New analytical methods enable the determination of cortisol concentrations in hair (HCC) as a retrospective long-term parameter for chronic stress. So far, it is still uncertain whether stress objectively measured by an increase in HCC might be a predictive factor associated with the development of an acute myocardial infarction.

Methods

Included in this study were 40 patients with an acute ST-segment elevation myocardial infarction (STEMI), confirmed by electrocardiography (ECG). The control group consisted of 80 patients without coronary artery disease (CAD).

Results

Patients with STEMI did not show significantly higher HCCs (p = 0.846) compared to the control group and there was no correlation with the extent of myocardial infarction (p = 0.701, r = 0.038). Correlations were found between HCC, diabetes mellitus (p = 0.046, odds ratio, OR = 6.346), low high-density lipoprotein (HDL) cholesterol concentration (p = 0.107) and glycated hemoglobin A (HbA1c) concentration (p = 0.083, r = 0.236). Furthermore, there was an association between an increased HCC and chronic heart failure (p = 0.110) and an association to the red blood cell distribution width (RDW) concentration (p = 0.005, r = 0.293).

Conclusion

The results of this study showed that patients with acute ST-segment elevation myocardial infarction did not have significantly higher levels of hair cortisol compared to the reference group; however, long-term metabolic changes as well as advanced chronic heart failure appear to be long-acting stress factors for the organism and increase cortisol levels in hair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Lassale C, Tzoulaki I, Moons KGM et al (2018) Separate and combined associations of obesity and metabolic health with coronary heart disease: a pan-European case-cohort analysis. Eur Heart J 39:397–406

    Article  PubMed  Google Scholar 

  2. Lyall DM, Celis-Morales C, Ward J et al (2017) Association of body mass index with cardiometabolic disease in the UK biobank: a mendelian randomization study. JAMA Cardiol 2:882–889

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mancia G, Fagard R, Narkiewicz K et al (2013) 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European society of hypertension (ESH) and of the European society of cardiology (ESC). J Hypertens 31:1281–1357

    Article  CAS  PubMed  Google Scholar 

  4. Ference BA, Ginsberg HN, Graham I et al (2017) Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European atherosclerosis society consensus panel. Eur Heart J 38:2459–2472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mons U (2011) Tabakattributable Mortalität in Deutschland und in den deutschen Bundesländern – Berechnungen mit Daten des Mikrozensus und der Todesursachenstatistik. Gesundheitswesen 73:238–246

    Article  CAS  PubMed  Google Scholar 

  6. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2004) Tobacco smoke and involuntary smoking. IARC Monogr Eval Carcinog Risks Hum 83:1–1438

    PubMed Central  Google Scholar 

  7. Centers for Disease Control and Prevention (US) (2004) The health consequences of smoking: a report of the surgeon general. Centers for Disease Control and Prevention (US), Atlanta

    Google Scholar 

  8. Wood AM, Kaptoge S, Butterworth AS et al (2018) Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet 391:1513–1523

    Article  PubMed  PubMed Central  Google Scholar 

  9. Behrends JC, Bischofberger J, Deutzmann R et al (2017) Physiologie. Thieme, Stuttgart, S 380–389

    Google Scholar 

  10. Kirschbaum C, Dettenborn L (2015) Cortisolbestimmung im Haar: Weitere Validierung und Anwendung in Studien diverser klinischer Stichproben. Deutsche Forschungsgemeinschaft (DFG) – Projektnummer 43762358. http://gepris.dfg.de/gepris/projekt/43762358/ergebnisse. Zugegriffen: 17. Nov. 2018

    Google Scholar 

  11. Mewes R, Reich H, Skoluda N et al (2017) Elevated hair cortisol concentrations in recently fled asylum seekers in comparison to permanently settled immigrants and non-immigrants. Transl Psychiatry 7:e1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pereg D, Gow R, Mosseri M et al (2011) Hair cortisol and the risk for acute myocardial infarction in adult men. Stress 14:73–81

    Article  CAS  PubMed  Google Scholar 

  13. Manenschijn L, Schaap L, van Schoor NM et al (2013) High long-term cortisol levels, measured in scalp hair, are associated with a history of cardiovascular disease. J Clin Endocrinol Metab 98:2078–2083

    Article  CAS  PubMed  Google Scholar 

  14. Dowlati Y, Herrmann N, Swardfager W et al (2010) Relationship between hair cortisol concentrations and depressive symptoms in patients with coronary artery disease. Neuropsychiatr Dis Treat 6:393–400

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Janssens H, Clays E, Fiers T et al (2017) Hair cortisol in relation to job stress and depressive symptoms. Occup Med (Lond) 67:114–120

    Article  CAS  Google Scholar 

  16. Gerber M, Kalak N, Elliot C et al (2013) Both hair cortisol levels and perceived stress predict increased symptoms of depression: an exploratory study in young adults. Neuropsychobiology 68:100–109

    Article  CAS  PubMed  Google Scholar 

  17. Herane Vives A, De Angel V, Papadopoulos A et al (2015) The relationship between cortisol, stress and psychiatric illness: new insights using hair analysis. J Psychiatr Res 70:38–49

    Article  CAS  PubMed  Google Scholar 

  18. Abell JG, Stalder T, Ferrie JE et al (2016) Assessing cortisol from hair samples in a large observational cohort. The Whitehall II study. Psychoneuroendocrinology 73:148–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Apple FS, Sharkey SW, Falahati A et al (1998) Assessment of left ventricular function using serum cardiac troponin I measurements following myocardial infarction. Clin Chim Acta 272:59–67

    Article  CAS  PubMed  Google Scholar 

  20. Feller S, Vigl M, Bergmann MM et al (2014) Predictors of hair cortisol concentrations in older adults. Psychoneuroendocrinology 39:132–140

    Article  CAS  PubMed  Google Scholar 

  21. Henley P, Jahedmotlagh Z, Thomson S et al (2013) Hair cortisol as a biomarker of stress among a first nation in Canada. Ther Drug Monit 35:595–599

    Article  CAS  PubMed  Google Scholar 

  22. Jackson SE, Kirschbaum C, Steptoe A (2017) Hair cortisol and adiposity in a population-based sample of 2,527 men and women aged 54 to 87 years. Obesity (Silver Spring) 25:539–544

    Article  CAS  Google Scholar 

  23. Staufenbiel SM, Penninx BWJH, de Rijke YB et al (2015) Determinants of hair cortisol and hair cortisone concentrations in adults. Psychoneuroendocrinology 60:182–194

    Article  CAS  PubMed  Google Scholar 

  24. Kostev K, Jacob L, Lucas A, Rathmann W (2018) Low annual frequency of HbA1c testing in people with type 2 diabetes in primary care practices in Germany. Diabet Med 35:249–254

    Article  CAS  PubMed  Google Scholar 

  25. Peeters GMEE, van Schoor NM, van Rossum EFC et al (2008) The relationship between cortisol, muscle mass and muscle strength in older persons and the role of genetic variations in the glucocorticoid receptor. Clin Endocrinol (Oxf) 69:673–682

    Article  CAS  Google Scholar 

  26. Marcell TJ (2003) Sarcopenia: causes, consequences, and preventions. J Gerontol A Biol Sci Med Sci 58:M911–6

    Google Scholar 

  27. LaPier TK (1997) Glucocorticoid-induced muscle atrophy. The role of exercise in treatment and prevention. J Cardiopulm Rehabil 17:76–84

    Article  CAS  PubMed  Google Scholar 

  28. Seene T, Alev K, Pehme A (1986) Effect of muscular activity on the turnover rate of actin and myosin heavy and light chains in different types of skeletal muscle. I. Changes in the turnover rate of myosin and actin during and after single-bout physical activity. Int J Sports Med 7:287–290

    Article  CAS  PubMed  Google Scholar 

  29. Dörner K (2013) Taschenlehrbuch Klinische Chemie und Hämatologie, 8. Aufl. Thieme, Stuttgart, S 547–550

    Google Scholar 

  30. Rassow J, Hauser K, Netzker R, Deutzmann R (2012) Biochemie, 3. Aufl. Thieme, Stuttgart, S 258–259

    Google Scholar 

  31. Younge JO, Wester VL, van Rossum EFC et al (2015) Cortisol levels in scalp hair of patients with structural heart disease. Int J Cardiol 184:71–78

    Article  CAS  PubMed  Google Scholar 

  32. Pereg D, Chan J, Russell E et al (2013) Cortisol and testosterone in hair as biological markers of systolic heart failure. Psychoneuroendocrinology 38:2875–2882

    Article  CAS  PubMed  Google Scholar 

  33. Pinkowski A (2014) RDW in Ergänzung zu BNP als Biomarker der Herzinsuffizienz zur Diagnose und Prognose bei Patienten mit akuter Luftnot in einer internistischen Notaufnahme. https://refubium.fu-berlin.de/handle/fub188/11051. Zugegriffen: 17. Nov. 2018

    Google Scholar 

  34. Tonelli M, Sacks F, Arnold M et al (2008) Relation between red blood cell distribution width and cardiovascular event rate in people with coronary disease. Circulation 117:163–168

    Article  PubMed  Google Scholar 

  35. van Kimmenade RRJ, Mohammed AA, Uthamalingam S et al (2010) Red blood cell distribution width and 1‑year mortality in acute heart failure. Eur J Heart Fail 12:129–136

    Article  PubMed  CAS  Google Scholar 

  36. Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175

    Article  CAS  PubMed  Google Scholar 

  37. Du J, Wang Y, Hunter R et al (2009) Dynamic regulation of mitochondrial function by glucocorticoids. Proc Natl Acad Sci U S A 106:3543–3548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aschbacher K, O’Donovan A, Wolkowitz OM et al (2013) Good stress, bad stress and oxidative stress. Insights from anticipatory cortisol reactivity. Psychoneuroendocrinology 38:1698–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Drabant EM, Kuo JR, Ramel W et al (2011) Experiential, autonomic, and neural responses during threat anticipation vary as a function of threat intensity and neuroticism. Neuroimage 55:401–410

    Article  PubMed  Google Scholar 

  40. O’Donovan A, Tomiyama AJ, Lin J et al (2012) Stress appraisals and cellular aging: a key role for anticipatory threat in the relationship between psychological stress and telomere length. Brain Behav Immun 26:573–579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Tomiyama AJ, O’Donovan A, Lin J et al (2012) Does cellular aging relate to patterns of allostasis? An examination of basal and stress reactive HPA axis activity and telomere length. Physiol Behav 106(1):40–45

    Article  CAS  PubMed  Google Scholar 

  42. Rensing L (2007) Psychosozialer Streß und Herz-Kreislauf-Risiken: Neue Einsichten in komplexe Wirkmechanismen. Blickpunkt Mann 5:12–18

    Google Scholar 

  43. Yung LM, Leung FP, Yao X et al (2006) Reactive oxygen species in vascular wall. Cardiovasc Hematol Disord Drug Targets 6:1–19

    Article  CAS  PubMed  Google Scholar 

  44. Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115:500–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kohlhaas M, Liu T, Knopp A et al (2010) Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 121:1606–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li Y, Huang TT, Carlson EJ et al (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11:376–381

    Article  CAS  PubMed  Google Scholar 

  47. Nakamura R, Egashira K, Machida Y et al (2002) Probucol attenuates left ventricular dysfunction and remodeling in tachycardia-induced heart failure: roles of oxidative stress and inflammation. Circulation 106:362–367

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Trappe.

Ethics declarations

Interessenkonflikt

H. Crom und H.-J. Trappe geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crom, H., Trappe, HJ. Haarkortisol als chronischer Stressparameter bei Patienten mit akutem ST-Strecken-Hebungs-Infarkt. Herz 46 (Suppl 2), 235–242 (2021). https://doi.org/10.1007/s00059-020-04990-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-020-04990-4

Schlüsselwörter

Keywords

Navigation