Skip to main content
Log in

Influence of ablation index on the incidence of cardiac tamponade complicating pulmonary vein isolation

Einfluss des Ablationsindex auf die Inzidenz der Herztamponade als Komplikation der Pulmonalvenenisolation

  • Original articles
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Background

Cardiac tamponade (CT) complicating pulmonary vein isolation (PVI) for atrial fibrillation (AF) is a complication that can increase morbidity and mortality. Radiofrequency energy is a known cause of CT. Ablation Index (AI) is a novel ablation quality marker. We hypothesized that use of AI reduces the incidence of CT.

Methods

All AF procedures between 10/2014 and 06/2019 were included. Three ablation groups were defined: group A, RF ablation with non-contact force (CF) catheter; group B, RF ablation with CF catheter; and group C, RF ablation with CF catheter using AI. All episodes of CT were analyzed.

Results

In total, 1222 consecutive AF patients underwent PVI. Group A consisted of 100 (8%) procedures, while group B included 432 (35%) procedures and group C 690 (57%) procedures. The overall risk for CT in all patients was 2.1% (26/1222). The risk in group A was 2.9% (3/100), in group B 2.5% (11/432), and in group C 1.7% (12/690), including all 1222 patients in the analysis (p < 0.05). Univariate analysis identified no further specific predictors for CT. With the exception of one patient (1/26; 3.8%), who needed surgical treatment, all CT could be successfully drained.

Conclusions

In a high-volume center, the use of AI decreased the risk of CT in patients undergoing RF ablation for AF by 32%.

Zusammenfassung

Hintergrund

Die Herztamponade (HT) als Komplikation der Pulmonalvenenisolation (PVI) bei Vorhofflimmern (VHF) kann Morbidität und Mortalität erhöhen. Radiofrequenz(RF)-Energie stellt eine bekannte Ursache der HT dar. Der Ablationsindex (AI) ist ein neuer Qualitätsindikator der Ablation. Im vorliegenden Beitrag wird untersucht, ob die Anwendung des AI die HT-Inzidenz senkt.

Methoden

Alle PVI zwischen 10/2014 und 6/2019 wurden eingeschlossen. Drei Ablationsgruppen wurden definiert: Gruppe A, RF-Ablation mit Katheter ohne Messung des Anpressdrucks („contact force“ [CF]); Gruppe B, RF-Ablation mit CF-Katheter; Gruppe C, RF-Ablation mit CF-Katheter und Anwendung des AI. Alle HT-Ereignisse wurden analysiert.

Ergebnisse

Insgesamt 1222 konsekutive Patienten mit VHF wurden einer PVI unterzogen. Gruppe A umfasste 100 (8%) Eingriffe, Gruppe B 432 (35%) und Gruppe C 690 (57%). Das Gesamtrisiko einer HT bei allen Patienten betrug 2,1% (26/1222). Das Risiko in Gruppe A lag bei 2,9% (3/100), in Gruppe B bei 2,5% (11/432) und in Gruppe C bei 1,7% (12/690), wobei alle 1222 Patienten in die Analyse eingingen (p < 0,05). Die univariate Analyse ergab keine weiteren spezifischen Prädiktoren für HT. Mit Ausnahme eines Patienten (1/26; 3,8%), der operativ versorgt werden musste, konnten alle HT erfolgreich drainiert werden.

Schlussfolgerungen

In einem Zentrum mit hohem Patientenaufkommen senkte die Anwendung des AI das HT-Risiko bei Patienten mit VHF, die einer RF-Ablation unterzogen wurden, um 32%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kirchhof P, Benussi S, Kotecha D et al (2016) 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace 18:1609–1678

    Article  Google Scholar 

  2. Steinbeck G, Sinner MF, Lutz M et al (2018) Incidence of complications related to catheter ablation of atrial fibrillation and atrial flutter: a nationwide in-hospital analysis of administrative data for Germany in 2014. Eur Heart J 39:4020–4029

    Article  Google Scholar 

  3. Cappato R, Calkins H, Chen SA et al (2009) Prevalence and causes of fatal outcome in catheter ablation of atrial fibrillation. J Am Coll Cardiol 53:1798–1803

    Article  Google Scholar 

  4. Kautzner J, Neuzil P, Lambert H et al (2015) EFFICAS II: optimization of catheter contact force improves outcome of pulmonary vein isolation for paroxysmal atrial fibrillation. Europace 17:1229–1235

    Article  Google Scholar 

  5. Conti S, Weerasooriya R, Novak P et al (2018) Contact force sensing for ablation of persistent atrial fibrillation: a randomized, multicenter trial. Heart Rhythm 15:201–208

    Article  Google Scholar 

  6. Phlips T, Taghji P, El Haddad M et al (2018) Improving procedural and one-year outcome after contact force-guided pulmonary vein isolation: the role of interlesion distance, ablation index, and contact force variability in the ‘CLOSE’-protocol. Europace 20:f419–f427

    Google Scholar 

  7. Lang RM, Bierig M, Devereux RB et al (2005) Recommendations for chamber quantification: a report from the American society of echocardiography’s guidelines and standards committee and the chamber Quantification writing group, developed in conjunction with the European association of echocardiography, a branch of the European society of cardiology. J Am Soc Echocardiogr 18:1440–1463

    Article  Google Scholar 

  8. Stabile G, Di Donna P, Schillaci V et al (2017) Safety and efficacy of pulmonary vein isolation using a surround flow catheter with contact force measurement capabilities: a multicenter registry. J Cardiovasc Electrophysiol 28:762–767

    Article  Google Scholar 

  9. Chun KRJ, Perrotta L, Bordignon S et al (2017) Complications in catheter ablation of atrial fibrillation in 3,000 consecutive procedures: balloon versus radiofrequency current ablation. JACC Clin Electrophysiol 3:154–161

    Article  Google Scholar 

  10. Belhassen B (2009) A 1 per 1,000 mortality rate after catheter ablation of atrial fibrillation: an acceptable risk. J Am Coll Cardiol 53(19):1804

    Article  Google Scholar 

  11. Morillo CA, Verma A, Connolly SJ et al (2014) Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of paroxysmal atrial fibrillation (RAAFT-2): a randomized trial. JAMA 311:692–700

    Article  CAS  Google Scholar 

  12. Arbelo E, Brugada J, Blomström-Lundqvist C et al (2017) Contemporary management of patients undergoing atrial fibrillation ablation: in-hospital and 1‑year follow-up findings from the ESC-EHRA atrial fibrillation ablation long-term registry. Eur Heart J 38:1303–1316

    PubMed  Google Scholar 

  13. Chen J, Dagres N, Hocini M et al (2015) Catheter ablation for atrial fibrillation: results from the first European snapshot survey on procedural routines for atrial fibrillation ablation (ESS-PRAFA) part II. Europace 17:1727–1732

    Article  Google Scholar 

  14. Kuck KH, Reddy VY, Schmidt B et al (2012) A novel radiofrequency ablation catheter using contact force sensing: Toccata study. Heart Rhythm 9:18–23

    Article  Google Scholar 

  15. Natale A, Reddy VY, Monir G et al (2014) Paroxysmal AF catheter ablation with a contact force sensing catheter: results of the prospective, multicenter SMART-AF trial. J Am Coll Cardiol 64:647–656

    Article  Google Scholar 

  16. Solimene F, Schillaci V, Shopova G et al (2019) Safety and efficacy of atrial fibrillation ablation guided by ablation index module. J Interv Card Electrophysiol 54:9–15

    Article  Google Scholar 

  17. Verma A, Jiang CY, Betts TR et al (2015) Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med 372:1812–1822

    Article  Google Scholar 

  18. Santoro F, Metzner A, Brunetti ND et al (2019) Left atrial anterior line ablation using ablation index and inter-lesion distance measurement. Clin Res Cardiol 108(9):1009–1016. https://doi.org/10.1007/s00392-019-01428-8

    Article  PubMed  Google Scholar 

  19. Chen S, Schmidt B, Bordignon S et al (2019) Ablation index-guided 50 W ablation for pulmonary vein isolation in patients with atrial fibrillation: procedural data, lesion analysis, and initial results from the FAFA AI high power study. J Cardiovasc Electrophysiol 30:2724–2731

    Article  Google Scholar 

  20. Kottmaier M, Popa M, Bourier F et al (2019) Safety and outcome of very high-power short-duration ablation using 70 W for pulmonary vein isolation in patients with paroxysmal atrial fibrillation. Europace 22(3):388–393. https://doi.org/10.1093/europace/euz342

    Article  Google Scholar 

  21. Barkagan M, Contreras-Valdes FM, Leshem E et al (2018) High-power and short-duration ablation for pulmonary vein isolation: safety, efficacy, and long-term durability. J Cardiovasc Electrophysiol 29:1287–1296

    Article  Google Scholar 

  22. Leshem E, Zilberman I, Tschabrunn CM et al (2018) High-power and short-duration ablation for pulmonary vein isolation: biophysical characterization. JACC Clin Electrophysiol 4:467–479

    Article  Google Scholar 

  23. Reddy VY, Grimaldi M, De Potter T et al (2019) Pulmonary vein isolation with very high power, short duration, temperature-controlled lesions the QDOT-fast trial. JACC Clin Electrophysiol 5(7):778–786

    Article  Google Scholar 

  24. Calzolari V, De Mattia L, Indiani S et al (2017) In vitro validation of the lesion size index to predict lesion width and depth after irrigated radiofrequency ablation in a porcine model. JACC Clin Electrophysiol 3:1126–1135

    Article  Google Scholar 

  25. Sundaram S, Choe W, Jordan JR et al (2018) Two year, single center clinical outcome after catheter ablation for paroxysmal atrial fibrillation guided by lesion index. J Atr Fibrillation 11:1760

    Article  Google Scholar 

  26. Reddy VY, Dukkipati SR, Neuzil P et al (2015) Randomized, controlled trial of the safety and effectiveness of a contact force-sensing irrigated catheter for ablation of paroxysmal atrial fibrillation: results of the TactiCath contact force ablation catheter study for atrial fibrillation (TOCCASTAR) study. Circulation 132:907–915

    Article  Google Scholar 

  27. Aldhoon B, Wichterle D, Peichl P et al (2013) Complications of catheter ablation for atrial fibrillation in a high-volume centre with the use of intracardiac echocardiography. Europace 15:24–32

    Article  Google Scholar 

  28. Di Biase L, Lakkireddy D, Trivedi C et al (2015) Feasibility and safety of uninterrupted periprocedural apixaban administration in patients undergoing radiofrequency catheter ablation for atrial fibrillation: results from a multicenter study. Heart Rhythm 12:1162–1168

    Article  Google Scholar 

  29. Lakkireddy D, Reddy YM, Di Biase L et al (2012) Feasibility and safety of dabigatran versus warfarin for periprocedural anticoagulation in patients undergoing radiofrequency ablation for atrial fibrillation: results from a multicenter prospective registry. J Am Coll Cardiol 59:1168–1174

    Article  CAS  Google Scholar 

  30. Lakkireddy D, Reddy YM, Di Biase L et al (2014) Feasibility and safety of uninterrupted rivaroxaban for periprocedural anticoagulation in patients undergoing radiofrequency ablation for atrial fibrillation: results from a multicenter prospective registry. J Am Coll Cardiol 63:982–988

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Reinsch MD, FESC.

Ethics declarations

Conflict of interest

N. Reinsch, A. Füting, and J. Buchholz declare that they have no competing interests. U. Ruprecht is a consultant for Biosense Webster. K. Neven received speaker fees from Biosense Webster.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case. This retrospective study was performed after consultation with the institutional ethics committee and in accordance with national legal requirements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinsch, N., Füting, A., Buchholz, J. et al. Influence of ablation index on the incidence of cardiac tamponade complicating pulmonary vein isolation. Herz 46 (Suppl 2), 228–234 (2021). https://doi.org/10.1007/s00059-020-04988-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-020-04988-y

Keywords

Schlüsselwörter

Navigation