Skip to main content
Log in

Predictive value of fibrinogen-to-albumin ratio in acute coronary syndrome

Prädiktiver Wert des Fibrinogen-Albumin-Quotienten beim akuten Koronarsyndrom

  • Original articles
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Background

We aimed to investigate the predictive value of the fibrinogen-to-albumin ratio (FAR) regarding the development of major cardiovascular events (MACE) in patients treated with percutaneous coronary intervention (PCI) for acute coronary syndrome (ACS).

Methods

This was a prospective, observational cohort study that included 261 consecutive patients who were treated with PCI. The patients were grouped according to the occurrence of MACE during the follow-up period.

Results

During follow-up, MACE occurred in 68 (26%) patients. The FAR was independently predictive of MACE (HR: 1.017, 95% CI: 1.010–1.024, p < 0.001). In addition, left ventricular ejection fraction (LVEF) and a diagnosis of ST-segment elevation myocardial infarction (STEMI) were independent predictors of MACE. The area under the curve (AUC) of the multivariable model, including LVEF and diagnosis of STEMI, was 0.707 (95% CI: 0.631–0.782, p < 0.001). When the FAR was added to the multivariable model, the AUC was 0.770 (95% CI: 0.702–0.838, z = 2.820, difference p = 0.0048).

Conclusion

The FAR could be used for the prediction of MACE in patients with ACS who have undergone PCI.

Zusammenfassung

Hintergrund

Ziel der vorliegenden Studie war es, den prädiktiven Wert des Fibrinogen-Albumin-Quotienten (FAR) hinsichtlich der Entstehung schwergradiger kardiovaskulärer Ereignisse (MACE) bei Patienten zu untersuchen, die wegen eines akuten Koronarsyndroms (ACS) mit einer perkutanen Koronarintervention (PCI) behandelt worden waren.

Methoden

Es handelt sich dabei um eine prospektive Beobachtungs-Kohortenstudie mit 261 konsekutiven Patienten, bei denen die Therapie mit einer PCI erfolgte. Die Patienten wurden je nach Auftreten von MACE während des Nachbeobachtungszeitraums eingruppiert.

Ergebnisse

So traten MACE während des Nachbeobachtungszeitraums bei 68 (26 %) Patienten auf. Der FAR war in unabhängiger Weise für MACE prädiktiv (Hazard Ratio, HR: 1,017; 95 %-Konfidenzintervall, 95 %-KI: 1,010–1,024; p < 0,001). Außerdem waren die linksventrikuläre Ejektionsfraktion (LVEF) und die Diagnose eines ST-Strecken-Hebungs-Infarkts (STEMI) unabhängige Prädiktoren für MACE. Im multivariablen Modell einschließlich LVEF und STEMI-Diagnose betrug die Fläche unter der Kurve (AUC) 0,707 (95 %-KI: 0,631–0,782; p < 0,001). Unter Berücksichtigung des FAR beim multivariablen Modell lag die AUC bei 0,770 (95 %-KI: 0,702–0,838; z = 2,820; Differenz bei p = 0,0048).

Schlussfolgerung

Der FAR könnte zur Prädiktion von MACE bei Patienten mit ACS eingesetzt werden, bei denen eine PCI durchgeführt wurde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schultz DR, Arnold PI (1990) Properties of four acute phase proteins: C‑reactive protein, serum amyloid A protein, alpha 1‑acid glycoprotein, and fibrinogen. Semin Arthritis Rheum 20(3):129–147

    Article  CAS  Google Scholar 

  2. Tabakcı MM, Gerin F, Sunbul M et al (2017) Relation of plasma fibrinogen level with the presence, severity, and complexity of coronary artery disease. Clin Appl Thromb Hemost 23(6):638–644

    Article  Google Scholar 

  3. Danesh J, Lewington S, Thompson SG et al (2005) Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA 294(14):1799–1809

    CAS  PubMed  Google Scholar 

  4. Ang L, Behnamfar O, Palakodeti S et al (2017) Elevated baseline serum fibrinogen: effect on 2‑year major adverse cardiovascular events following percutaneous coronary intervention. J Am Heart Assoc 6(11). https://doi.org/10.1161/JAHA.117.006580

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kuller LH, Eichner JE, Orchard TJ et al (1991) The relation between serum albumin levels and risk of coronary heart disease in the Multiple Risk Factor Intervention Trial. Am J Epidemiol 134(11):1266–1277

    Article  CAS  Google Scholar 

  6. Oduncu V, Erkol A, Karabay CY et al (2013) The prognostic value of serum albumin levels on admission in patients with acute ST segment elevation myocardial infarction undergoing a primary percutaneous coronary intervention. Coron Artery Dis 24(2):88–94

    Article  Google Scholar 

  7. Ertas F, Avci E, Kiris T (2019) The ratio of fibrinogen to albumin as a predictor of contrast-induced nephropathy after carotid angiography. Angiology 70(5):458–464

    Article  CAS  Google Scholar 

  8. Kayapinar O, Ozde C, Kaya A (2019) Relationship between the reciprocal change in inflammation-related biomarkers (fibrinogen-to-albumin and hsCRP-to-albumin ratios) and the presence and severity of coronary slow flow. Clin Appl Thromb Hemost 25:1076029619835383

    Article  CAS  Google Scholar 

  9. Xiao L, Jia Y, Wang X, Huang H (2019) The impact of preoperative fibrinogen-albumin ratio on mortality in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Clin Chim Acta 493:8–13

    Article  CAS  Google Scholar 

  10. Zhao YP, Ji YY, Wang FY et al (2019) Value of fibrinogen to albumin ratio on predicting spontaneous recanalization of infarct-related artery in patients with acute ST-segment elevation myocardial infarction. Zhonghua Xin Xue Guan Bing Za Zhi 47(2):123–128

    CAS  PubMed  Google Scholar 

  11. Karahan O, Acet H, Ertaş F et al (2016) The relationship between fibrinogen to albumin ratio and severity of coronary artery disease in patients with STEMI. Am J Emerg Med 34(6):1037–1042

    Article  Google Scholar 

  12. TIMI Study Group (1985) The Thrombolysis in Myocardial Infarction (TIMI) trial. Phase I findings. N Engl J Med 312(14):932–936

    Article  Google Scholar 

  13. Amsterdam EA, Wenger NK, Brindis RG et al (2014) 2014 AHA/ACC Guideline for the Management of Patients with Non-ST-Elevation Acute Coronary Syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 64(24):e139–e228

    Article  Google Scholar 

  14. Levine GN, Bates ER, Blankenship JC et al (2016) 2015 ACC/AHA/SCAI focused update on primary percutaneous coronary intervention for patients with ST-elevation myocardial infarction: an update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention and the 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Catheter Cardiovasc Interv 87(6):1001–1019

    Article  Google Scholar 

  15. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44(3):837–845

    Article  CAS  Google Scholar 

  16. Pencina MJ, D’Agostino RB Sr, Steyerberg EW (2011) Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 30(1):11–21

    Article  Google Scholar 

  17. Mosesson MW (2005) Fibrinogen and fibrin structure and functions. J Thromb Haemost 3(8):1894–1904

    Article  CAS  Google Scholar 

  18. Wilson PA, McNicol GP, Douglas AS (1968) Effect of fibrinogen degradation products on platelet aggregation. J Clin Pathol 21(2):147–153

    Article  CAS  Google Scholar 

  19. Song B, Shu Y, Xu YN et al (2015) Plasma fibrinogen lever and risk of coronary heart disease among Chinese population: a systematic review and meta-analysis. Int J Clin Exp Med 8(8):13195–13202

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kurtul A, Yarlioglues M, Murat SN et al (2016) The association of plasma fibrinogen with the extent and complexity of coronary lesions in patients with acute coronary syndrome. Kardiologia Pol 74(4):338–345

    Google Scholar 

  21. Kaptoge S, Di Angelantonio E, Pennells L et al (2012) C‑reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med 367(14):1310–1320

    Article  Google Scholar 

  22. Shi Y, Wu Y, Bian C et al (2010) Predictive value of plasma fibrinogen levels in patients admitted for acute coronary syndrome. Tex Heart Inst J 37(2):178–183

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Peters T (1995) All about albumin, biochemistry, genetics, and medical applications. Academic Press, Elsevier

    Google Scholar 

  24. Maalej N, Albrecht R, Loscalzo J et al (1999) The potent platelet inhibitory effects of S‑nitrosated albumin coating of artificial surfaces. J Am Coll Cardiol 33(5):1408–1414

    Article  CAS  Google Scholar 

  25. Joles JA, Willekes-Koolschijn N, Koomans HA (1997) Hypoalbuminemia causes high blood viscosity by increasing red cell lysophosphatidylcholine. kidney Int 52(3):761–770

    Article  CAS  Google Scholar 

  26. Don BR, Kaysen G (2004) Serum albumin: relationship to inflammation and nutrition. Semin Dial 17(6):432–437

    Article  Google Scholar 

  27. Roche M, Rondeau P, Singh NR et al (2008) The antioxidant properties of serum albumin. Febs Lett 582(13):1783–1787

    Article  CAS  Google Scholar 

  28. Gillum RF, Makuc DM (1992) Serum albumin, coronary heart disease, and death. Am Heart J 123(2):507–513

    Article  CAS  Google Scholar 

  29. Sinha MK, Roy D, Gaze DC et al (2004) Role of “Ischemia modified albumin”, a new biochemical marker of myocardial ischaemia, in the early diagnosis of acute coronary syndromes. Emerg Med J 21(1):29–34

    Article  CAS  Google Scholar 

  30. Peacock F, Morris DL, Anwaruddin S et al (2006) Meta-analysis of ischemia-modified albumin to rule out acute coronary syndromes in the emergency department. Am Heart J 152(2):253–262

    Article  CAS  Google Scholar 

  31. González-Pacheco H, Amezcua-Guerra LM, Sandoval J et al (2017) Prognostic Implications of Serum Albumin Levels in Patients With Acute Coronary Syndromes. Am J Cardiol 119(7):951–958

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to: (1) substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data, (2) drafting the article or revising it critically for important intellectual content, and (3) final approval of the version to be published.

Corresponding author

Correspondence to T. Kırış MD.

Ethics declarations

Conflict of interest

M. Çetin, T. Erdoğan, T. Kırış, S. Özer, A.S. Yılmaz, H. Durak, A.Ç. Aykan and Ö. Şatıroğlu declare, that they have no competing interests.

All procedures performed in studies involving human participants or on human tissue were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çetin, M., Erdoğan, T., Kırış, T. et al. Predictive value of fibrinogen-to-albumin ratio in acute coronary syndrome. Herz 45 (Suppl 1), 145–151 (2020). https://doi.org/10.1007/s00059-019-4840-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-019-4840-5

Keywords

Schlüsselwörter

Navigation