Skip to main content
Log in

Congestive heart failure caused by silent ischemia and silent myocardial infarction

Diagnostic challenge in type 2 diabetes

Kongestive Herzinsuffizienz durch stumme Ischämie und stummen Herzinfarkt

Diagnostische Herausforderung bei Typ-2-Diabetes

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

In asymptomatic patients with type 2 diabetes (T2D), the prevalence of silent myocardial infarction on routine electrocardiograms is about 4% while for silent myocardial ischemia it is 20–30%. Some studies showed that silent myocardial infarction is associated with an increased risk of incident heart failure (HF), whereas no prospective study has ever reported such a risk in patients with silent myocardial ischemia. In patients with HF, however, previously unrecognized coronary artery disease (CAD) often seems to be involved. Brain natriuretic peptide (BNP) and N‑terminal pro-BNP (NT-proBNP) levels represent first-line diagnostic tools for patients with suspected HF and might also serve as biomarkers for silent CAD. Echocardiography provides a detailed report of cardiac alterations that includes changes suggestive of ischemia, heart failure, and left ventricular dysfunction in addition to strong prognostic indices. Diabetic patients with silent myocardial infarction or silent myocardial ischemia should be screened for asymptomatic changes in left ventricular function or structure. In patients with silent CAD, all risk factors need to be better controlled and the choice of antihyperglycemic agents adjusted. In patients with congestive HF and no obvious cause of HF, invasive coronary angiography (or noninvasive computed tomography angiography) should be performed to detect CAD, since the finding of CAD may involve revascularization and requires additional treatments including antiplatelet agents and statins. Future research is needed to examine the cost effectiveness of screening for silent myocardial ischemia as part of HF risk assessment, and to identify preventive therapies to lower the risk of HF among patients with silent myocardial infarction.

Zusammenfassung

Bei asymptomatischen Patienten mit Typ-2-Diabetes (T2D) liegt die Prävalenz des stummen Herzinfarkts im Routineelektrokardiogramm etwa bei 4%, die Prävalenz der stummen Myokardischämie dagegen bei 20–30%. In einigen Studien zeigte sich, dass ein stummer Herzinfarkt mit einem erhöhten Risiko für eine neu auftretende Herzinsuffizienz (HF) einhergeht, jedoch ist ein solches Risiko bei Patienten mit stummer Myokardischämie bisher nicht in einer prospektiven Studie dokumentiert worden. Bei Patienten mit HF scheint häufig eine zuvor unbekannte koronare Herzkrankheit (KHK) mitbeteiligt zu sein. Für Patienten mit Verdacht auf HF stellen die Werte für BNP („brain natriuretic peptide“) und NT-proBNP („N-terminal pro-BNP“) die diagnostischen Parameter der ersten Wahl dar, die sich auch als Biomarker für eine stumme KHK eignen könnten. Die Echokardiographie ermöglicht zusätzlich zu soliden prognostischen Anhaltspunkten einen detaillierten Einblick in kardiale Veränderungen einschließlich Hinweisen auf Ischämie, Herzinsuffizienz und linksventrikuläre Dysfunktion. Patienten mit Diabetes und stummem Herzinfarkt oder stummer Myokardischämie sollten auf asymptomatische Veränderungen der linksventrikulären Funktion oder Struktur hin gescreent werden. Bei Patienten mit stummer KHK müssen alle Risikofaktoren besser eingestellt und die Auswahl antihyperglykämischer Substanzen angepasst werden. Bei Patienten mit kongestiver HF und ohne offensichtliche Ursache der HF sollte eine invasive Koronarangiographie (oder eine nichtinvasive Computertomographie-Angiographie) zur Diagnose der KHK durchgeführt werden. Denn die Feststellung einer KHK könnte auch eine Revaskularisierung beinhalten und erfordert eine zusätzliche Behandlung mit Thrombozytenaggregationshemmern und Statinen. Zukünftige Untersuchungen sind erforderlich, um die Wirtschaftlichkeit des Screenings auf stumme Myokardischämie als Teil der HF-Risikobeurteilung zu ermitteln und präventive Behandlungen zur Senkung des HF-Risikos bei Patienten mit stummem Herzinfarkt zu identifizieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34(1):29–34

    Article  CAS  PubMed  Google Scholar 

  2. Thrainsdottir IS, Aspelund T, Thorgeirsson G et al (2005) The association between glucose abnormalities and heart failure in the population-based Reykjavik study. Diabetes Care 28(3):612–616

    Article  PubMed  Google Scholar 

  3. de Simone G, Devereux RB, Chinali M et al (2010) Diabetes and incident heart failure in hypertensive and normotensive participants of the Strong Heart Study. J Hypertens 28(2):353–360. https://doi.org/10.1097/HJH.0b013e3283331169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Standl E, Schnell O, McGuire DK (2016) Heart failure considerations of antihyperglycemic medications for type 2 diabetes. Circ Res 118(11):1830–1843. https://doi.org/10.1161/CIRCRESAHA.116.306924

    Article  CAS  PubMed  Google Scholar 

  5. Rawshani A, Rawshani A, Franzen S et al (2017) Mortality and cardiovascular disease in type 1 and type 2 diabetes. N Engl J Med 376(15):1407–1418. https://doi.org/10.1056/NEJMoa1608664

    Article  PubMed  Google Scholar 

  6. Boonman-de Winter LJ, Rutten FH, Cramer MJ et al (2012) High prevalence of previously unknown heart failure and left ventricular dysfunction in patients with type 2 diabetes. Diabetologia 55(8):2154–2162. https://doi.org/10.1007/s00125-012-2579-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cowie MR, Wood DA, Coats AJ et al (1999) Incidence and aetiology of heart failure; a population-based study. Eur Heart J 20(6):421–428

    Article  CAS  PubMed  Google Scholar 

  8. Nichols GA, Hillier TA, Erbey JR, Brown JB (2001) Congestive heart failure in type 2 diabetes: prevalence, incidence, and risk factors. Diabetes Care 24(9):1614–1619

    Article  CAS  PubMed  Google Scholar 

  9. Zelniker TA, Wiviott SD, Raz I et al (2019) SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393(10166):31–39. https://doi.org/10.1016/S0140-6736(18)32590-X

    Article  CAS  PubMed  Google Scholar 

  10. Dinh W, Futh R, Lankisch M et al (2011) Cardiovascular autonomic neuropathy contributes to left ventricular diastolic dysfunction in subjects with type 2 diabetes and impaired glucose tolerance undergoing coronary angiography. Diabet Med 28(3):311–318. https://doi.org/10.1111/j.1464-5491.2010.03221.x

    Article  CAS  PubMed  Google Scholar 

  11. Tribouilloy C, Rusinaru D, Mahjoub H et al (2008) Prognostic impact of diabetes mellitus in patients with heart failure and preserved ejection fraction: a prospective five-year study. Heart 94(11):1450–1455. https://doi.org/10.1136/hrt.2007.128769

    Article  CAS  PubMed  Google Scholar 

  12. Targher G, Dauriz M, Laroche C et al (2017) In-hospital and 1‑year mortality associated with diabetes in patients with acute heart failure: results from the ESC-HFA Heart Failure Long-Term Registry. Eur J Heart Fail 19(1):54–65. https://doi.org/10.1002/ejhf.679

    Article  CAS  PubMed  Google Scholar 

  13. Dauriz M, Targher G, Laroche C et al (2017) Association between diabetes and 1‑year adverse clinical outcomes in a multinational cohort of ambulatory patients with chronic heart failure: results from the ESC-HFA Heart Failure Long-Term Registry. Diabetes Care 40(5):671–678. https://doi.org/10.2337/dc16-2016

    Article  CAS  PubMed  Google Scholar 

  14. Cavender MA, Steg PG, Smith SC Jr et al (2015) Impact of diabetes mellitus on hospitalization for heart failure, cardiovascular events, and death: outcomes at 4 years from the Reduction of Atherothrombosis for Continued Health (REACH) Registry. Circulation 132(10):923–931. https://doi.org/10.1161/CIRCULATIONAHA.114.014796

    Article  PubMed  Google Scholar 

  15. Johansson I, Dahlstrom U, Edner M et al (2016) Prognostic implications of type 2 diabetes mellitus in Ischemic and nonischemic heart failure. J Am Coll Cardiol 68(13):1404–1416. https://doi.org/10.1016/j.jacc.2016.06.061

    Article  PubMed  Google Scholar 

  16. Pride YB, Piccirillo BJ, Gibson CM (2013) Prevalence, consequences, and implications for clinical trials of unrecognized myocardial infarction. Am J Cardiol 111(6):914–918. https://doi.org/10.1016/j.amjcard.2012.11.042

    Article  PubMed  Google Scholar 

  17. Valensi P, Lorgis L, Cottin Y (2011) Prevalence, incidence, predictive factors and prognosis of silent myocardial infarction: a review of the literature. Arch Cardiovasc Dis 104(3):178–188. https://doi.org/10.1016/j.acvd.2010.11.013

    Article  PubMed  Google Scholar 

  18. Burgess DC, Hunt D, Li L et al (2010) Incidence and predictors of silent myocardial infarction in type 2 diabetes and the effect of fenofibrate: an analysis from the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Eur Heart J 31(1):92–99. https://doi.org/10.1093/eurheartj/ehp377

    Article  PubMed  Google Scholar 

  19. MacDonald MR, Petrie MC, Home PD et al (2011) Incidence and prevalence of unrecognized myocardial infarction in people with diabetes: a substudy of the Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of Glycemia in Diabetes (RECORD) Study. Diabetes Care 34(6):1394–1396. https://doi.org/10.2337/dc10-2398

    Article  PubMed  PubMed Central  Google Scholar 

  20. Qureshi WT, Zhang ZM, Chang PP et al (2018) Silent myocardial infarction and long-term risk of heart failure: the ARIC Study. J Am Coll Cardiol 71(1):1–8. https://doi.org/10.1016/j.jacc.2017.10.071

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kondola S, Davis WA, Dembo LG, Davis TM (2008) A cardiac magnetic resonance imaging study of electrocardiographic Q waves in type 2 diabetes: the Fremantle Diabetes Study. Diabetes Res Clin Pract 82(1):87–92. https://doi.org/10.1016/j.diabres.2008.06.016

    Article  PubMed  Google Scholar 

  22. Amier RP, Smulders MW, van der Flier WM et al (2018) Long-term prognostic implications of previous silent myocardial infarction in patients presenting with acute myocardial infarction. JACC Cardiovasc Imaging 11(12):1773–1781. https://doi.org/10.1016/j.jcmg.2018.02.009

    Article  PubMed  Google Scholar 

  23. Kannel WB, Cupples LA, Gagnon DR (1990) Incidence, precursors and prognosis of unrecognized myocardial infarction. Adv Cardiol 37:202–214. https://doi.org/10.1159/000418828

    Article  CAS  PubMed  Google Scholar 

  24. Cosson E, Guimfack M, Paries J et al (2003) Are silent coronary stenoses predictable in diabetic patients and predictive of cardiovascular events? Diabetes Metab 29(5):470–476

    Article  CAS  PubMed  Google Scholar 

  25. Valensi P, Cosson E (2010) It is not yet the time to stop screening diabetic patients for silent myocardial ischaemia. Diabetes Metab 36(2):91–96. https://doi.org/10.1016/j.diabet.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  26. Wackers FJ, Young LH, Inzucchi SE et al (2004) Detection of silent myocardial ischemia in asymptomatic diabetic subjects: the DIAD Study. Diabetes Care 27(8):1954–1961

    Article  PubMed  Google Scholar 

  27. Zellweger MJ, Maraun M, Osterhues HH et al (2014) Progression to overt or silent CAD in asymptomatic patients with diabetes mellitus at high coronary risk: main findings of the prospective multicenter BARDOT trial with a pilot randomized treatment substudy. JACC Cardiovasc Imaging 7(10):1001–1010. https://doi.org/10.1016/j.jcmg.2014.07.010

    Article  PubMed  Google Scholar 

  28. Sultan A, Perriard F, Macioce V et al (2017) Evolution of silent myocardial ischaemia prevalence and cardiovascular disease risk factor management in type 2 diabetes over a 10-year period: an observational study. Diabet Med 34(9):1244–1251. https://doi.org/10.1111/dme.13364

    Article  CAS  PubMed  Google Scholar 

  29. Cosson E, Paycha F, Paries J et al (2004) Detecting silent coronary stenoses and stratifying cardiac risk in patients with diabetes: ECG stress test or exercise myocardial scintigraphy? Diabet Med 21(4):342–348. https://doi.org/10.1111/j.1464-5491.2004.01157.x

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen MT, Pham I, Valensi P et al (2014) Flow-mediated-paradoxical vasoconstriction is independently associated with asymptomatic myocardial ischemia and coronary artery disease in type 2 diabetic patients. Cardiovasc Diabetol 13:20. https://doi.org/10.1186/1475-2840-13-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nitenberg A, Valensi P, Sachs R et al (1993) Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes 42(7):1017–1025

    Article  CAS  PubMed  Google Scholar 

  32. Pham I, Nguyen MT, Valensi P et al (2015) Noninvasive study of coronary microcirculation response to a cold pressor test. Eur J Clin Invest 45(2):135–143. https://doi.org/10.1111/eci.12389

    Article  PubMed  Google Scholar 

  33. Raggi P, Shaw LJ, Berman DS, Callister TQ (2004) Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol 43(9):1663–1669. https://doi.org/10.1016/j.jacc.2003.09.068

    Article  CAS  PubMed  Google Scholar 

  34. Valenti V, Hartaigh BO, Cho I et al (2016) Absence of coronary artery calcium identifies asymptomatic diabetic individuals at low near-term but not long-term risk of mortality: a 15-year follow-up study of 9715 patients. Circ Cardiovasc Imaging 9(2):e3528. https://doi.org/10.1161/CIRCIMAGING.115.003528

    Article  PubMed  PubMed Central  Google Scholar 

  35. Anand DV, Lim E, Hopkins D et al (2006) Risk stratification in uncomplicated type 2 diabetes: prospective evaluation of the combined use of coronary artery calcium imaging and selective myocardial perfusion scintigraphy. Eur Heart J 27(6):713–721. https://doi.org/10.1093/eurheartj/ehi808

    Article  PubMed  Google Scholar 

  36. Ryden L, Grant PJ, Anker SD et al (2013) ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the task force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). Eur Heart J 34(39):3035–3087. https://doi.org/10.1093/eurheartj/eht108

    Article  PubMed  Google Scholar 

  37. Soliman EZ (2018) Silent myocardial infarction and risk of heart failure: current evidence and gaps in knowledge. Trends Cardiovasc Med. https://doi.org/10.1016/j.tcm.2018.09.004

    Article  PubMed  Google Scholar 

  38. Cosson E, Guimfack M, Paries J et al (2003) Prognosis for coronary stenoses in patients with diabetes and silent myocardial ischemia. Diabetes Care 26(4):1313–1314

    Article  PubMed  Google Scholar 

  39. Young LH, Wackers FJ, Chyun DA et al (2009) Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA 301(15):1547–1555. https://doi.org/10.1001/jama.2009.476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cosson E, Nguyen MT, Chanu B et al (2011) Cardiovascular risk prediction is improved by adding asymptomatic coronary status to routine risk assessment in type 2 diabetic patients. Diabetes Care 34(9):2101–2107. https://doi.org/10.2337/dc11-0480

    Article  PubMed  PubMed Central  Google Scholar 

  41. Valensi P, Sachs RN, Harfouche B et al (2001) Predictive value of cardiac autonomic neuropathy in diabetic patients with or without silent myocardial ischemia. Diabetes Care 24(2):339–343

    Article  CAS  PubMed  Google Scholar 

  42. Fox KF, Cowie MR, Wood DA et al (2001) Coronary artery disease as the cause of incident heart failure in the population. Eur Heart J 22(3):228–236. https://doi.org/10.1053/euhj.2000.2289

    Article  CAS  PubMed  Google Scholar 

  43. Kosuga T, Komukai K, Miyanaga S et al (2016) Diabetes is a predictor of coronary artery stenosis in patients hospitalized with heart failure. Heart Vessels 31(5):671–676. https://doi.org/10.1007/s00380-015-0669-x

    Article  PubMed  Google Scholar 

  44. Nguyen MT, Cosson E, Valensi P et al (2011) Transthoracic echocardiographic abnormalities in asymptomatic diabetic patients: association with microalbuminuria and silent coronary artery disease. Diabetes Metab 37(4):343–350. https://doi.org/10.1016/j.diabet.2010.12.006

    Article  CAS  PubMed  Google Scholar 

  45. Pham I, Cosson E, Nguyen MT et al (2015) Evidence for a specific diabetic cardiomyopathy: an observational retrospective echocardiographic study in 656 asymptomatic type 2 diabetic patients. Int J Endocrinol 2015:743503. https://doi.org/10.1155/2015/743503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200. https://doi.org/10.1093/eurheartj/ehw128

    Article  PubMed  Google Scholar 

  47. McDonagh TA, Holmer S, Raymond I et al (2004) NT-proBNP and the diagnosis of heart failure: a pooled analysis of three European epidemiological studies. Eur J Heart Fail 6(3):269–273. https://doi.org/10.1016/j.ejheart.2004.01.010

    Article  CAS  PubMed  Google Scholar 

  48. Cosson E, Nguyen MT, Pham I et al (2009) N‑terminal pro-B-type natriuretic peptide: an independent marker for coronary artery disease in asymptomatic diabetic patients. Diabet Med 26(9):872–879. https://doi.org/10.1111/j.1464-5491.2009.02788.x

    Article  CAS  PubMed  Google Scholar 

  49. Ernande L, Audureau E, Jellis CL et al (2017) Clinical implications of echocardiographic phenotypes of patients with diabetes mellitus. J Am Coll Cardiol 70(14):1704–1716. https://doi.org/10.1016/j.jacc.2017.07.792

    Article  PubMed  Google Scholar 

  50. Huelsmann M, Neuhold S, Resl M et al (2013) PONTIAC (NT-proBNP selected prevention of cardiac events in a population of diabetic patients without a history of cardiac disease): a prospective randomized controlled trial. J Am Coll Cardiol 62(15):1365–1372. https://doi.org/10.1016/j.jacc.2013.05.069

    Article  PubMed  Google Scholar 

  51. Bowman L, Mafham M, Wallendszus K et al (2018) Effects of aspirin for primary prevention in persons with diabetes mellitus. N Engl J Med 379(16):1529–1539. https://doi.org/10.1056/NEJMoa1804988

    Article  CAS  PubMed  Google Scholar 

  52. Muhlestein JB, Lappe DL, Lima JA et al (2014) Effect of screening for coronary artery disease using CT angiography on mortality and cardiac events in high-risk patients with diabetes: the FACTOR-64 randomized clinical trial. JAMA 312(21):2234–2243. https://doi.org/10.1001/jama.2014.15825

    Article  CAS  PubMed  Google Scholar 

  53. Clerc OF, Fuchs TA, Stehli J et al (2018) Non-invasive screening for coronary artery disease in asymptomatic diabetic patients: a systematic review and meta-analysis of randomised controlled trials. Eur Heart J Cardiovasc Imaging 19(8):838–846. https://doi.org/10.1093/ehjci/jey014

    Article  PubMed  Google Scholar 

  54. Stratton IM, Adler AI, Neil HA et al (2000) Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321(7258):405–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. von Bibra H, Hansen A, Dounis V et al (2004) Augmented metabolic control improves myocardial diastolic function and perfusion in patients with non-insulin dependent diabetes. Heart 90(12):1483–1484. https://doi.org/10.1136/hrt.2003.020842

    Article  Google Scholar 

  56. Control G, Turnbull FM, Abraira C et al (2009) Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia 52(11):2288–2298. https://doi.org/10.1007/s00125-009-1470-0

    Article  CAS  Google Scholar 

  57. Reaven PD, Moritz TE, Schwenke DC et al (2009) Intensive glucose-lowering therapy reduces cardiovascular disease events in veterans affairs diabetes trial participants with lower calcified coronary atherosclerosis. Diabetes 58(11):2642–2648. https://doi.org/10.2337/db09-0618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gerstein HC, Miller ME, Ismail-Beigi F et al (2014) Effects of intensive glycaemic control on ischaemic heart disease: analysis of data from the randomised, controlled ACCORD trial. Lancet 384(9958):1936–1941. https://doi.org/10.1016/S0140-6736(14)60611-5

    Article  PubMed  PubMed Central  Google Scholar 

  59. Roussel R, Travert F, Pasquet B et al (2011) Metformin use and mortality among patients with diabetes and atherothrombosis. Arch Intern Med 170(21):1892–1899

    Article  Google Scholar 

  60. Erdmann E, Charbonnel B, Wilcox RG et al (2007) Pioglitazone use and heart failure in patients with type 2 diabetes and preexisting cardiovascular disease: data from the PROactive study (PROactive 08). Diabetes Care 30(11):2773–2778. https://doi.org/10.2337/dc07-0717

    Article  CAS  PubMed  Google Scholar 

  61. Hanefeld M, Cagatay M, Petrowitsch T et al (2004) Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: meta-analysis of seven long-term studies. Eur Heart J 25(1):10–16

    Article  CAS  PubMed  Google Scholar 

  62. Scirica BM, Braunwald E, Raz I et al (2014) Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation 130(18):1579–1588. https://doi.org/10.1161/CIRCULATIONAHA.114.010389

    Article  CAS  PubMed  Google Scholar 

  63. McGuire DK, Van de Werf F, Armstrong PW et al (2016) Association between sitagliptin use and heart failure hospitalization and related outcomes in type 2 diabetes mellitus: secondary analysis of a randomized clinical trial. JAMA Cardiol 1(2):126–135. https://doi.org/10.1001/jamacardio.2016.0103

    Article  PubMed  Google Scholar 

  64. Marso SP, Daniels GH, Brown-Frandsen K et al (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375(4):311–322. https://doi.org/10.1056/NEJMoa1603827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Marso SP, Bain SC, Consoli A et al (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375(19):1834–1844. https://doi.org/10.1056/NEJMoa1607141

    Article  CAS  PubMed  Google Scholar 

  66. Hernandez AF, Green JB, Janmohamed S et al (2018) Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (harmony outcomes): a double-blind, randomised placebo-controlled trial. Lancet 392(10157):1519–1529. https://doi.org/10.1016/S0140-6736(18)32261-X

    Article  CAS  PubMed  Google Scholar 

  67. Margulies KB, Hernandez AF, Redfield MM et al (2016) Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 316(5):500–508. https://doi.org/10.1001/jama.2016.10260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jorsal A, Kistorp C, Holmager P et al (2017) Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)-a multicentre, double-blind, randomised, placebo-controlled trial. Eur J Heart Fail 19(1):69–77. https://doi.org/10.1002/ejhf.657

    Article  CAS  PubMed  Google Scholar 

  69. Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373(22):2117–2128. https://doi.org/10.1056/NEJMoa1504720

    Article  CAS  PubMed  Google Scholar 

  70. Davies MJ, D’Alessio DA, Fradkin J et al (2018) Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 61(12):2461–2498. https://doi.org/10.1007/s00125-018-4729-5

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Valensi.

Ethics declarations

Conflict of interest

P. Valensi has received speaker fees from Abbott, AstraZeneca, Bayer, Eli-Lilly, GlaxoSmithKline, Merck Santé, Merck-Sharp Dohme, Novo-Nordisk, Pierre Fabre and Sanofi-Aventis, research grants from Abbott, AstraZeneca, Bristol Myers Squibb, GlaxoSmithKline, Merck Santé, Merck-Sharp Dohme and Novo-Nordisk, and reports participation in Experts Committees for Abbott, Amgen, AstraZeneca, Boehringer-Ingelheim, Daichi-Sankyo, GlaxoSmithKline, Kowa, Merck-Sharp Dohme, Novo-Nordisk, Sanofi-Aventis. C. Meune has received speaker fees from Bayer, Biomérieux, Bristol Myers Squibb, Novartis, Roche Diagnostics and reports participation in Experts Committees for Bayer, Biomérieux, Servier, Novartis, Roche Diagnostics.

For this article no studies with human participants or animals were performed by any of the authors. All cited studies were performed in accordance with the ethical standards indicated in each publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valensi, P., Meune, C. Congestive heart failure caused by silent ischemia and silent myocardial infarction. Herz 44, 210–217 (2019). https://doi.org/10.1007/s00059-019-4798-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-019-4798-3

Keywords

Schlüsselwörter

Navigation