Skip to main content

Mikrobiom, Diabetes und Herz: neue Zusammenhänge?

Microbiome, diabetes and heart: a novel link?

Zusammenfassung

Patienten mit Typ-2-Diabetes haben ein hohes kardiovaskuläres Risiko. Die zugrunde liegenden Pathomechanismen sind bisher nicht hinreichend verstanden und die therapeutischen Möglichkeiten dementsprechend begrenzt. Das Darmmikrobiom könnte eine wichtige Rolle bei kardiometabolischen Erkrankungen spielen. Ein Ungleichgewicht in der Darmflora wurde bereits mit Insulinresistenz, Diabetes mellitus und kardiovaskulären Erkrankungen wie Atherosklerose und Herzinsuffizienz in Verbindung gebracht. Ein Teil der negativen kardiovaskulären Effekte des Typ-2-Diabetes mellitus könnte somit über die intestinale Bakterienflora vermittelt werden. Dieser Übersichtsartikel diskutiert spezifische, mit dem Darmmikrobiom assoziierte Mechanismen, welche sowohl beim Typ-2-Diabetes als auch bei Herz-Kreislauf-Erkrankungen moduliert sind. Auf der einen Seite wird dargestellt, wie Darmbakterien zu einer systemischen Low-grade-Inflammation beitragen können. Auf der anderen Seite wird aufgezeigt, wie das intestinale Mikrobiom als komplexes metabolisches Organ über die Produktion von bioaktiven Metaboliten den kardiometabolischen Phänotyp beeinflusst. Weitere Studien müssen zeigen, ob diese Mechanismen zu dem hohen kardiovaskulären Risiko bei Typ-2-Diabetes beitragen.

Abstract

Patients with type 2 diabetes suffer from a high cardiovascular risk. The underlying pathomechanisms are not fully understood and treatment options are correspondingly limited. The gut microbiome could be a new important player in cardiometabolic diseases. Dysbiosis of the intestinal flora has been associated with insulin resistance, diabetes mellitus and cardiovascular diseases, such as atherosclerosis and heart failure. The negative cardiovascular effects of type 2 diabetes mellitus could therefore partly be mediated by gut microbiota. This review article discusses specific gut microbiome-associated mechanisms, which are modulated in both type 2 diabetes and cardiovascular diseases. It is presented how intestinal bacteria may contribute to systemic low-grade inflammation. Furthermore, it is shown how the intestinal microbiome as a complex metabolic organ is able to influence the cardiometabolic phenotype via production of bioactive metabolites. Further studies will have to demonstrate whether these mechanisms contribute to the high cardiovascular risk in type 2 diabetes.

This is a preview of subscription content, access via your institution.

Abb. 1

Literatur

  1. Askoxylakis V et al (2010) Long-term survival of cancer patients compared to heart failure and stroke: a systematic review. BMC Cancer 10:105. https://doi.org/10.1186/1471-2407-10-105

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution. Eur J Heart Fail 18:891–975. https://doi.org/10.1093/eurheartj/ehw128

    Article  PubMed  Google Scholar 

  3. Bahtiyar G, Gutterman D, Lebovitz H (2016) Heart failure: a major cardiovascular complication of diabetes mellitus. Curr Diab Rep. https://doi.org/10.1007/s11892-016-0809-4

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kappel B, Marx N, Federici M (2015) Oral hypoglycemic agents and the heart failure conundrum: lessons from and for outcome trials. Nutr Metab Cardiovasc Dis 25:697–705. https://doi.org/10.1016/j.numecd.2015.06.006

    CAS  Article  PubMed  Google Scholar 

  5. Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128. https://doi.org/10.1056/NEJMoa1504720

    CAS  Article  PubMed  Google Scholar 

  6. Neal B, Perkovic V, Mahaffey KW et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657. https://doi.org/10.1056/NEJMoa1611925

    CAS  Article  PubMed  Google Scholar 

  7. Marso SP, Daniels GH, Brown-Frandsen K et al (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375:311–322. https://doi.org/10.1056/NEJMoa1603827

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Nicholson J, Holmes E, Kinross J et al (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267. https://doi.org/10.1126/science.1223813

    CAS  Article  PubMed  Google Scholar 

  9. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. Plos Biol. https://doi.org/10.1371/journal.pbio.1002533

    Article  PubMed  PubMed Central  Google Scholar 

  10. Turnbaugh PJ et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. https://doi.org/10.1038/nature05414

    Article  PubMed  Google Scholar 

  11. Ridaura VK, Faith JJ, Rey FE et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice gut microbiota from twins metabolism in mice. Science 341:1241214. https://doi.org/10.1126/science.1241214

    CAS  Article  PubMed  Google Scholar 

  12. Frank DN, Pace NR (2008) Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol 24:4–10. https://doi.org/10.1097/MOG.0b013e3282f2b0e8

    CAS  Article  PubMed  Google Scholar 

  13. Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65. https://doi.org/10.1038/nature08821

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Murgas Torrazza R, Neu J (2011) The developing intestinal microbiome and its relationship to health and disease in the neonate. J Perinatol 31(Suppl 1):S29–S34. https://doi.org/10.1038/jp.2010.172

    Article  PubMed  Google Scholar 

  15. Nicholson JK, Wilson ID (2003) Opinion: understanding „global“ systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2:668–676. https://doi.org/10.1038/nrd1157

    CAS  Article  PubMed  Google Scholar 

  16. Karlsson FH, Fåk F, Nookaew I et al (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 3. https://doi.org/10.1038/ncomms2266

    Article  PubMed  Google Scholar 

  17. Jie Z, Xia H, Zhong S‑L et al (2017) The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 8:845. https://doi.org/10.1038/s41467-017-00900-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Hoyles L et al (2018) Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med. https://doi.org/10.1038/s41591-018-0061-3

    Article  PubMed  PubMed Central  Google Scholar 

  19. Le Chatelier E, Nielsen T, Qin J et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546. https://doi.org/10.1038/nature12506

    CAS  Article  PubMed  Google Scholar 

  20. Pedersen HK et al (2016) Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535:376–381. https://doi.org/10.1038/nature18646

    CAS  Article  PubMed  Google Scholar 

  21. Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63. https://doi.org/10.1038/nature09922

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Henao-Mejia J, Elinav E, Jin C et al (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482:179–185. https://doi.org/10.1038/nature10809

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Suez J, Korem T, Zeevi D et al (2014) Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514:181–186. https://doi.org/10.1038/nature13793

    CAS  Article  PubMed  Google Scholar 

  24. Blandino G et al (2016) Impact of gut microbiota on diabetes mellitus. Diabetes Metab. https://doi.org/10.1016/j.diabet.2016.04.004

    Article  PubMed  Google Scholar 

  25. Frank DN, Amand ALS, Feldman RA et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104:13780–13785. https://doi.org/10.1073/pnas.0706625104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Bartolomaeus H et al (2018) The short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.118.036652

    Article  PubMed Central  Google Scholar 

  27. Goldsmith JR, Sartor RB (2014) The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J Gastroenterol 49:785–798. https://doi.org/10.1007/s00535-014-0953-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Karmarkar D, Rock KL (2013) Microbiota signalling through MyD88 is necessary for a systemic neutrophilic inflammatory response. Immunology 140:483–492. https://doi.org/10.1111/imm.12159

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Parrinello CM, Lutsey PL, Ballantyne CM et al (2015) Six-year change in high-sensitivity C‑reactive protein and risk of diabetes, cardiovascular disease, and mortality. Am Heart J 170:380–389.e4. https://doi.org/10.1016/j.ahj.2015.04.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Ridker PM, Everett BM, Thuren T et al (2017) Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131. https://doi.org/10.1056/NEJMoa1707914

    CAS  Article  PubMed  Google Scholar 

  31. Lepper PM, Kleber ME, Grammer TB et al (2011) Lipopolysaccharide-binding protein (LBP) is associated with total and cardiovascular mortality in individuals with or without stable coronary artery disease--results from the Ludwigshafen Risk and Cardiovascular Health Study (LURIC). Atherosclerosis 219:291–297. https://doi.org/10.1016/j.atherosclerosis.2011.06.001

    CAS  Article  PubMed  Google Scholar 

  32. Krogh-Madsen R et al (2008) Effect of short-term intralipid infusion on the immune response during low-dose endotoxemia in humans. Am J Physiol Endocrinol Metab. https://doi.org/10.1152/ajpendo.00507.2007

    Article  PubMed  Google Scholar 

  33. Gnauck A, Lentle RG, Kruger MC (2016) The characteristics and function of bacterial lipopolysaccharides and their endotoxic potential in humans. Int Rev Immunol 35(3):189–218

    CAS  Article  PubMed  Google Scholar 

  34. Cani PD, Amar J, Iglesias MA et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772. https://doi.org/10.2337/db06-1491

    CAS  Article  PubMed  Google Scholar 

  35. Wiedermann CJ et al (1999) Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: prospective results from the Bruneck Study. J Am Coll Cardiol. https://doi.org/10.1016/S0735-1097(99)00448-9

    Article  PubMed  Google Scholar 

  36. Pussinen PJ, Tuomisto K, Jousilahti P et al (2007) Endotoxemia, immune response to periodontal pathogens, and systemic inflammation associate with incident cardiovascular disease events. Arterioscler Thromb Vasc Biol. https://doi.org/10.1161/ATVBAHA.106.138743

    Article  PubMed  Google Scholar 

  37. Szeto CC et al (2008) Endotoxemia is related to systemic inflammation and atherosclerosis in peritoneal dialysis patients. Clin J Am Soc Nephrol. https://doi.org/10.2215/CJN.03600807

    Article  PubMed  PubMed Central  Google Scholar 

  38. Creely SJ, McTernan PG, Kusminski CM et al (2006) Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. https://doi.org/10.1152/ajpendo.00302.2006

    Article  PubMed  Google Scholar 

  39. Pussinen PJ et al (2011) Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care. https://doi.org/10.2337/dc10-1676

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cuaz-Pérolin C, Billiet L, Baugé E et al (2008) Antiinflammatory and antiatherogenic effects of the NF-kappaB inhibitor acetyl-11-keto-beta-boswellic acid in LPS-challenged ApoE-/- mice. Arterioscler Thromb Vasc Biol. https://doi.org/10.1161/ATVBAHA.107.155606

    Article  PubMed  Google Scholar 

  41. Malik TH, Cortini A, Carassiti D et al (2010) The alternative pathway is critical for pathogenic complement activation in endotoxin- and diet-induced atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.110.981365

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mehta NN et al (2010) Experimental endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes. https://doi.org/10.2337/db09-0367

    Article  PubMed  Google Scholar 

  43. Michelsen KS, Wong MH, Shah PK et al (2004) Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.0403249101

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shi H et al (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. https://doi.org/10.1172/JCI28898

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tsukumo DML, Carvalho-Filho MA, Carvalheira JBC et al (2007) Loss-of-function mutation in toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 56(8):1986–1998

    CAS  Article  PubMed  Google Scholar 

  46. Herieka M, Faraj TA, Erridge C (2016) Reduced dietary intake of pro-inflammatory Toll-like receptor stimulants favourably modifies markers of cardiometabolic risk in healthy men. Nutr Metab Cardiovasc Dis. https://doi.org/10.1016/j.numecd.2015.12.001

    Article  PubMed  Google Scholar 

  47. Ghoshal S, Witta J, Zhong J et al (2009) Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res. https://doi.org/10.1194/jlr.M800156-JLR200

    Article  PubMed  Google Scholar 

  48. Erridge C, Attina T, Spickett CM, Webb DJ (2007) A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 86:1286–1292

    CAS  Article  PubMed  Google Scholar 

  49. Niebauer J, Volk HD, Kemp M et al (1999) Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 353:1838–1842. https://doi.org/10.1016/s0140-6736(98)09286-1

    CAS  Article  PubMed  Google Scholar 

  50. Cani PD, Possemiers S, Van De Wiele T et al (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. https://doi.org/10.1136/gut.2008.165886

    Article  PubMed  Google Scholar 

  51. Amar J, Serino M, Lange C et al (2011) Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia. https://doi.org/10.1007/s00125-011-2329-8

    Article  PubMed  Google Scholar 

  52. Burcelin R, Serino M, Chabo C et al (2013) Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes Obes Metab 15(Suppl 3):61–70

    CAS  Article  PubMed  Google Scholar 

  53. Amar J, Chabo C, Waget A et al (2011) Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. Embo Mol Med 3:559–572. https://doi.org/10.1002/emmm.201100159

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Amar J, Lange C, Payros G et al (2013) Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population: the D.E.S.I.R. study. PLoS ONE 8:e54461. https://doi.org/10.1371/journal.pone.0054461

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Koeth RA, Wang Z, Levison BS et al (2013) Intestinal microbiota metabolism of L‑carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585. https://doi.org/10.1038/nm.3145

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Zhu W, Gregory JC, Org E et al (2016) Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell:1–14. https://doi.org/10.1016/j.cell.2016.02.011

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang Z et al (2015) Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163:1585–1595. https://doi.org/10.1016/j.cell.2015.11.055

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Organ CL et al (2016) Choline diet and its gut microbe-derived metabolite, trimethylamine N‑oxide, exacerbate pressure overload-induced heart failure. Circ Heart Fail 9:e2314. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002314

    CAS  Article  PubMed  Google Scholar 

  59. Ferguson JF (2013) Meat-loving microbes: Do steak-eating bacteria promote atherosclerosis? Circ Cardiovasc Genet 6:308–309. https://doi.org/10.1161/CIRCGENETICS.113.000213

    Article  PubMed  Google Scholar 

  60. Trøseid M, Ueland T, Hov JR et al (2015) Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med 277:717–726. https://doi.org/10.1111/joim.12328

    CAS  Article  PubMed  Google Scholar 

  61. Tang WHW, Wang Z, Fan Y et al (2014) Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol 64:1908–1914. https://doi.org/10.1016/j.jacc.2014.02.617

    CAS  Article  PubMed  Google Scholar 

  62. Schuett K, Kleber ME, Scharnagl H et al (2017) Trimethylamine-N-oxide and heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol 70:3202–3204. https://doi.org/10.1016/j.jacc.2017.10.064

    Article  PubMed  Google Scholar 

  63. Shan Z et al (2017) Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes. Am J Clin Nutr. https://doi.org/10.3945/ajcn.117.157107

    Article  PubMed  Google Scholar 

  64. Kim MH, Kang SG, Park JH et al (2013) Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Baillieres Clin Gastroenterol 145:396–406. https://doi.org/10.1053/j.gastro.2013.04.056 (e1–10)

    CAS  Article  Google Scholar 

  65. MacFabe DF et al (2011) Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder. Behav Brain Res 217:47–54. https://doi.org/10.1016/j.bbr.2010.10.005

    CAS  Article  PubMed  Google Scholar 

  66. Priyadarshini M, Wicksteed B, Schiltz GE et al (2016) SCFA receptors in pancreatic β cells: novel diabetes targets? Trends Endocrinol Metab. https://doi.org/10.1016/j.tem.2016.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kim CH, Park J, Kim M (2014) Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Netw 14:277–288. https://doi.org/10.4110/in.2014.14.6.277

    Article  PubMed  PubMed Central  Google Scholar 

  68. Menzel T et al (2004) Butyrate inhibits leukocyte adhesion to endothelial cells via modulation of VCAM-1. Inflamm Bowel Dis 10:122–128

    Article  PubMed  Google Scholar 

  69. Aguilar EC, Leonel AJ, Teixeira LG et al (2014) Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation. Nutr Metab Cardiovasc Dis 24:606–613. https://doi.org/10.1016/j.numecd.2014.01.002

    CAS  Article  PubMed  Google Scholar 

  70. Wu H, Esteve E, Tremaroli V et al (2017) Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 23:850–858. https://doi.org/10.1038/nm.4345

    CAS  Article  PubMed  Google Scholar 

  71. Arpaia N, Campbell C, Fan X et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T‑cell generation. Nature. https://doi.org/10.1038/nature12726

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wilck N, Matus MG, Kearney SM et al (2017) Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551:585–589. https://doi.org/10.1038/nature24628

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Ivanov II et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. https://doi.org/10.1016/j.cell.2009.09.033

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cavallari JF, Denou E, Foley KP et al (2016) Different Th17 immunity in gut, liver, and adipose tissues during obesity: the role of diet, genetics, and microbes. Gut Microbes 7:82–89. https://doi.org/10.1080/19490976.2015.1127481

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Livanos AE, Greiner TU, Vangay P et al (2016) Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat Rev Microbiol 1:16140. https://doi.org/10.1038/nmicrobiol.2016.140

    CAS  Article  Google Scholar 

  76. Gong F, Wu J, Zhou P et al (2016) Interleukin-22 might act as a double-edged sword in type 2 diabetes and coronary artery disease. Mediators Inflamm 2016:8254797. https://doi.org/10.1155/2016/8254797

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Abdel-Moneim A, Bakery HH, Allam G (2018) The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomed Pharmacother 101:287–292. https://doi.org/10.1016/j.biopha.2018.02.103

    CAS  Article  PubMed  Google Scholar 

  78. Myers JM, Cooper LT, Kem DC et al (2016) Cardiac myosin-Th17 responses promote heart failure in human myocarditis. JCI Insight 1. https://doi.org/10.1172/jci.insight.85851

    Article  PubMed  PubMed Central  Google Scholar 

  79. Li J et al (2010) The treg/Th17 imbalance in patients with idiopathic dilated cardiomyopathy. Scand J Immunol 71:298–303. https://doi.org/10.1111/j.1365-3083.2010.02374.x

    CAS  Article  PubMed  Google Scholar 

  80. Ridlon JM, Kang D‑J, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res. https://doi.org/10.1194/jlr.R500013-JLR200

    Article  PubMed  Google Scholar 

  81. Postler TS, Ghosh S (2017) Understanding the Holobiont: How microbial metabolites affect human health and shape the immune system. Cell Metab 26(1):110–130

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Ryan PM, Stanton C, Caplice NM (2017) Bile acids at the cross-roads of gut microbiome-host cardiometabolic interactions. Diabetol Metab Syndr 9:1–12. https://doi.org/10.1186/s13098-017-0299-9

    CAS  Article  Google Scholar 

  83. Chávez-Talavera O et al (2017) Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Baillieres Clin Gastroenterol. https://doi.org/10.1053/j.gastro.2017.01.055

    Article  Google Scholar 

  84. Charach G, Argov O, Geiger K et al (2018) Diminished bile acids excretion is a risk factor for coronary artery disease: 20-year follow up and long-term outcome. Therap Adv Gastroenterol 11:1756283X17743420. https://doi.org/10.1177/1756283X17743420

    Article  PubMed  Google Scholar 

  85. Jadhav K, Xu Y, Xu Y et al (2018) Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR. Mol Metab 9:131–140. https://doi.org/10.1016/j.molmet.2018.01.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. Bozadjieva N, Heppner KM, Seeley RJ (2018) Targeting FXR and FGF19 to treat metabolic diseases-lessons learned from bariatric surgery. Diabetes. https://doi.org/10.2337/dbi17-0007

    Article  PubMed  PubMed Central  Google Scholar 

  87. Vrieze A et al (2014) Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol 60:824–831. https://doi.org/10.1016/j.jhep.2013.11.034

    CAS  Article  PubMed  Google Scholar 

  88. Huffman KM, Shah SH, Stevens RD et al (2009) Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care. https://doi.org/10.2337/dc08-2075

    Article  PubMed  PubMed Central  Google Scholar 

  89. Newgard CB, An J, Bain JR et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. https://doi.org/10.1016/j.cmet.2009.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wang TJ et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med. https://doi.org/10.1038/nm.2307

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bhattacharya S, Granger CB, Craig D et al (2014) Validation of the association between a branched chain amino acid metabolite profile and extremes of coronary artery disease in patients referred for cardiac catheterization. Atherosclerosis. https://doi.org/10.1016/j.atherosclerosis.2013.10.036

    Article  PubMed  Google Scholar 

  92. Shah SH et al (2012) Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease. Am Heart J. https://doi.org/10.1016/j.ahj.2012.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  93. Neinast MD, Jang C, Hui S et al (2018) Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab. https://doi.org/10.1016/j.cmet.2018.10.013

    Article  PubMed  PubMed Central  Google Scholar 

  94. Sun H, Olson KC, Gao C et al (2016) Catabolic defect of branched-chain amino acids promotes heart failure. Circulation 133:2038–2049. https://doi.org/10.1161/CIRCULATIONAHA.115.020226

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. Kappel BA et al (2017) Effect of Empagliflozin on the metabolic signature of patients with type 2 diabetes mellitus and cardiovascular disease. Circulation 136:969–972. https://doi.org/10.1161/CIRCULATIONAHA.117.029166

    CAS  Article  PubMed  Google Scholar 

  96. Lehrke M, Marx N (2011) Cardiovascular effects of incretin-based therapies. Rev Diabet Stud 8:382–391. https://doi.org/10.1900/RDS.2011.8.382

    Article  PubMed  PubMed Central  Google Scholar 

  97. Grasset E, Puel A, Charpentier J et al (2017) A specific gut Microbiota Dysbiosis of type 2 diabetic mice induces GLP-1 resistance through an enteric NO-dependent and gut-brain axis mechanism. Cell Metab 25:1075–1090.e5. https://doi.org/10.1016/j.cmet.2017.04.013

    CAS  Article  PubMed  Google Scholar 

  98. Chimerel C et al (2014) Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep 9:1202–1208. https://doi.org/10.1016/j.celrep.2014.10.032

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. Korpela K, Salonen A, Virta LJ et al (2016) Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun 7:1–8. https://doi.org/10.1038/ncomms10410

    CAS  Article  Google Scholar 

  100. Saari A et al (2015) Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatr Electron Pages 135:617–626. https://doi.org/10.1542/peds.2014-3407

    Article  Google Scholar 

  101. Surawicz CM, Brandt LJ, Binion DG et al (2013) Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol 108:478–498. https://doi.org/10.1038/ajg.2013.4 (quiz 499)

    CAS  Article  PubMed  Google Scholar 

  102. Borody TJ, Paramsothy S, Agrawal G (2013) Fecal microbiota transplantation: indications, methods, evidence, and future directions. Curr Gastroenterol Rep 15:337. https://doi.org/10.1007/s11894-013-0337-1

    Article  PubMed  PubMed Central  Google Scholar 

  103. Vrieze A et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Baillieres Clin Gastroenterol 143:913–916.e7. https://doi.org/10.1053/j.gastro.2012.06.031

    CAS  Article  Google Scholar 

  104. Cani PD, Neyrinck AM, Fava F et al (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50:2374–2383. https://doi.org/10.1007/s00125-007-0791-0

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Kappel.

Ethics declarations

Interessenkonflikt

B.A. Kappel gibt an, dass kein Interessenkonflikt besteht. M. Lehrke weist auf folgende Beziehungen hin: Erhalt von Forschungsunterstützung durch Böhringer Ingelheim, Novo Nordisk, MSD; Ausführung von Vortragstätigkeiten für Böhringer Ingelheim, MSD, AstraZeneca, BMS, Servier, Novo Nordisk, Sanofi, Amgen; Ausführung von Beratertätigkeiten für Böhringer Ingelheim, MSD, AstraZeneca, Novo Nordisk, Sanofi, Amgen, GSK, Roche.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kappel, B.A., Lehrke, M. Mikrobiom, Diabetes und Herz: neue Zusammenhänge?. Herz 44, 223–230 (2019). https://doi.org/10.1007/s00059-019-4791-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-019-4791-x

Schlüsselwörter

  • Darmmikrobiom
  • Typ-2-Diabetes
  • Herzinsuffizienz
  • Kardiovaskuläre Erkrankungen
  • Metabolismus

Keywords

  • Gut microbiome
  • Diabetes mellitus, type 2
  • Heart failure
  • Cardiovascular disease
  • Metabolism