Askoxylakis V et al (2010) Long-term survival of cancer patients compared to heart failure and stroke: a systematic review. BMC Cancer 10:105. https://doi.org/10.1186/1471-2407-10-105
Article
PubMed
PubMed Central
Google Scholar
Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution. Eur J Heart Fail 18:891–975. https://doi.org/10.1093/eurheartj/ehw128
Article
PubMed
Google Scholar
Bahtiyar G, Gutterman D, Lebovitz H (2016) Heart failure: a major cardiovascular complication of diabetes mellitus. Curr Diab Rep. https://doi.org/10.1007/s11892-016-0809-4
Article
PubMed
PubMed Central
Google Scholar
Kappel B, Marx N, Federici M (2015) Oral hypoglycemic agents and the heart failure conundrum: lessons from and for outcome trials. Nutr Metab Cardiovasc Dis 25:697–705. https://doi.org/10.1016/j.numecd.2015.06.006
CAS
Article
PubMed
Google Scholar
Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128. https://doi.org/10.1056/NEJMoa1504720
CAS
Article
PubMed
Google Scholar
Neal B, Perkovic V, Mahaffey KW et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657. https://doi.org/10.1056/NEJMoa1611925
CAS
Article
PubMed
Google Scholar
Marso SP, Daniels GH, Brown-Frandsen K et al (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375:311–322. https://doi.org/10.1056/NEJMoa1603827
CAS
Article
PubMed
PubMed Central
Google Scholar
Nicholson J, Holmes E, Kinross J et al (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267. https://doi.org/10.1126/science.1223813
CAS
Article
PubMed
Google Scholar
Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. Plos Biol. https://doi.org/10.1371/journal.pbio.1002533
Article
PubMed
PubMed Central
Google Scholar
Turnbaugh PJ et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. https://doi.org/10.1038/nature05414
Article
PubMed
Google Scholar
Ridaura VK, Faith JJ, Rey FE et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice gut microbiota from twins metabolism in mice. Science 341:1241214. https://doi.org/10.1126/science.1241214
CAS
Article
PubMed
Google Scholar
Frank DN, Pace NR (2008) Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol 24:4–10. https://doi.org/10.1097/MOG.0b013e3282f2b0e8
CAS
Article
PubMed
Google Scholar
Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65. https://doi.org/10.1038/nature08821
CAS
Article
PubMed
PubMed Central
Google Scholar
Murgas Torrazza R, Neu J (2011) The developing intestinal microbiome and its relationship to health and disease in the neonate. J Perinatol 31(Suppl 1):S29–S34. https://doi.org/10.1038/jp.2010.172
Article
PubMed
Google Scholar
Nicholson JK, Wilson ID (2003) Opinion: understanding „global“ systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2:668–676. https://doi.org/10.1038/nrd1157
CAS
Article
PubMed
Google Scholar
Karlsson FH, Fåk F, Nookaew I et al (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 3. https://doi.org/10.1038/ncomms2266
Article
PubMed
Google Scholar
Jie Z, Xia H, Zhong S‑L et al (2017) The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 8:845. https://doi.org/10.1038/s41467-017-00900-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Hoyles L et al (2018) Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med. https://doi.org/10.1038/s41591-018-0061-3
Article
PubMed
PubMed Central
Google Scholar
Le Chatelier E, Nielsen T, Qin J et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546. https://doi.org/10.1038/nature12506
CAS
Article
PubMed
Google Scholar
Pedersen HK et al (2016) Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535:376–381. https://doi.org/10.1038/nature18646
CAS
Article
PubMed
Google Scholar
Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63. https://doi.org/10.1038/nature09922
CAS
Article
PubMed
PubMed Central
Google Scholar
Henao-Mejia J, Elinav E, Jin C et al (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482:179–185. https://doi.org/10.1038/nature10809
CAS
Article
PubMed
PubMed Central
Google Scholar
Suez J, Korem T, Zeevi D et al (2014) Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514:181–186. https://doi.org/10.1038/nature13793
CAS
Article
PubMed
Google Scholar
Blandino G et al (2016) Impact of gut microbiota on diabetes mellitus. Diabetes Metab. https://doi.org/10.1016/j.diabet.2016.04.004
Article
PubMed
Google Scholar
Frank DN, Amand ALS, Feldman RA et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104:13780–13785. https://doi.org/10.1073/pnas.0706625104
CAS
Article
PubMed
PubMed Central
Google Scholar
Bartolomaeus H et al (2018) The short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.118.036652
Article
PubMed Central
Google Scholar
Goldsmith JR, Sartor RB (2014) The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J Gastroenterol 49:785–798. https://doi.org/10.1007/s00535-014-0953-z
CAS
Article
PubMed
PubMed Central
Google Scholar
Karmarkar D, Rock KL (2013) Microbiota signalling through MyD88 is necessary for a systemic neutrophilic inflammatory response. Immunology 140:483–492. https://doi.org/10.1111/imm.12159
CAS
Article
PubMed
PubMed Central
Google Scholar
Parrinello CM, Lutsey PL, Ballantyne CM et al (2015) Six-year change in high-sensitivity C‑reactive protein and risk of diabetes, cardiovascular disease, and mortality. Am Heart J 170:380–389.e4. https://doi.org/10.1016/j.ahj.2015.04.017
CAS
Article
PubMed
PubMed Central
Google Scholar
Ridker PM, Everett BM, Thuren T et al (2017) Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131. https://doi.org/10.1056/NEJMoa1707914
CAS
Article
PubMed
Google Scholar
Lepper PM, Kleber ME, Grammer TB et al (2011) Lipopolysaccharide-binding protein (LBP) is associated with total and cardiovascular mortality in individuals with or without stable coronary artery disease--results from the Ludwigshafen Risk and Cardiovascular Health Study (LURIC). Atherosclerosis 219:291–297. https://doi.org/10.1016/j.atherosclerosis.2011.06.001
CAS
Article
PubMed
Google Scholar
Krogh-Madsen R et al (2008) Effect of short-term intralipid infusion on the immune response during low-dose endotoxemia in humans. Am J Physiol Endocrinol Metab. https://doi.org/10.1152/ajpendo.00507.2007
Article
PubMed
Google Scholar
Gnauck A, Lentle RG, Kruger MC (2016) The characteristics and function of bacterial lipopolysaccharides and their endotoxic potential in humans. Int Rev Immunol 35(3):189–218
CAS
Article
PubMed
Google Scholar
Cani PD, Amar J, Iglesias MA et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772. https://doi.org/10.2337/db06-1491
CAS
Article
PubMed
Google Scholar
Wiedermann CJ et al (1999) Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: prospective results from the Bruneck Study. J Am Coll Cardiol. https://doi.org/10.1016/S0735-1097(99)00448-9
Article
PubMed
Google Scholar
Pussinen PJ, Tuomisto K, Jousilahti P et al (2007) Endotoxemia, immune response to periodontal pathogens, and systemic inflammation associate with incident cardiovascular disease events. Arterioscler Thromb Vasc Biol. https://doi.org/10.1161/ATVBAHA.106.138743
Article
PubMed
Google Scholar
Szeto CC et al (2008) Endotoxemia is related to systemic inflammation and atherosclerosis in peritoneal dialysis patients. Clin J Am Soc Nephrol. https://doi.org/10.2215/CJN.03600807
Article
PubMed
PubMed Central
Google Scholar
Creely SJ, McTernan PG, Kusminski CM et al (2006) Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. https://doi.org/10.1152/ajpendo.00302.2006
Article
PubMed
Google Scholar
Pussinen PJ et al (2011) Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care. https://doi.org/10.2337/dc10-1676
Article
PubMed
PubMed Central
Google Scholar
Cuaz-Pérolin C, Billiet L, Baugé E et al (2008) Antiinflammatory and antiatherogenic effects of the NF-kappaB inhibitor acetyl-11-keto-beta-boswellic acid in LPS-challenged ApoE-/- mice. Arterioscler Thromb Vasc Biol. https://doi.org/10.1161/ATVBAHA.107.155606
Article
PubMed
Google Scholar
Malik TH, Cortini A, Carassiti D et al (2010) The alternative pathway is critical for pathogenic complement activation in endotoxin- and diet-induced atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.110.981365
Article
PubMed
PubMed Central
Google Scholar
Mehta NN et al (2010) Experimental endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes. https://doi.org/10.2337/db09-0367
Article
PubMed
Google Scholar
Michelsen KS, Wong MH, Shah PK et al (2004) Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.0403249101
Article
PubMed
PubMed Central
Google Scholar
Shi H et al (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. https://doi.org/10.1172/JCI28898
Article
PubMed
PubMed Central
Google Scholar
Tsukumo DML, Carvalho-Filho MA, Carvalheira JBC et al (2007) Loss-of-function mutation in toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 56(8):1986–1998
CAS
Article
PubMed
Google Scholar
Herieka M, Faraj TA, Erridge C (2016) Reduced dietary intake of pro-inflammatory Toll-like receptor stimulants favourably modifies markers of cardiometabolic risk in healthy men. Nutr Metab Cardiovasc Dis. https://doi.org/10.1016/j.numecd.2015.12.001
Article
PubMed
Google Scholar
Ghoshal S, Witta J, Zhong J et al (2009) Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res. https://doi.org/10.1194/jlr.M800156-JLR200
Article
PubMed
Google Scholar
Erridge C, Attina T, Spickett CM, Webb DJ (2007) A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 86:1286–1292
CAS
Article
PubMed
Google Scholar
Niebauer J, Volk HD, Kemp M et al (1999) Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 353:1838–1842. https://doi.org/10.1016/s0140-6736(98)09286-1
CAS
Article
PubMed
Google Scholar
Cani PD, Possemiers S, Van De Wiele T et al (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. https://doi.org/10.1136/gut.2008.165886
Article
PubMed
Google Scholar
Amar J, Serino M, Lange C et al (2011) Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia. https://doi.org/10.1007/s00125-011-2329-8
Article
PubMed
Google Scholar
Burcelin R, Serino M, Chabo C et al (2013) Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes Obes Metab 15(Suppl 3):61–70
CAS
Article
PubMed
Google Scholar
Amar J, Chabo C, Waget A et al (2011) Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. Embo Mol Med 3:559–572. https://doi.org/10.1002/emmm.201100159
CAS
Article
PubMed
PubMed Central
Google Scholar
Amar J, Lange C, Payros G et al (2013) Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population: the D.E.S.I.R. study. PLoS ONE 8:e54461. https://doi.org/10.1371/journal.pone.0054461
CAS
Article
PubMed
PubMed Central
Google Scholar
Koeth RA, Wang Z, Levison BS et al (2013) Intestinal microbiota metabolism of L‑carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585. https://doi.org/10.1038/nm.3145
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhu W, Gregory JC, Org E et al (2016) Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell:1–14. https://doi.org/10.1016/j.cell.2016.02.011
Article
PubMed
PubMed Central
Google Scholar
Wang Z et al (2015) Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163:1585–1595. https://doi.org/10.1016/j.cell.2015.11.055
CAS
Article
PubMed
PubMed Central
Google Scholar
Organ CL et al (2016) Choline diet and its gut microbe-derived metabolite, trimethylamine N‑oxide, exacerbate pressure overload-induced heart failure. Circ Heart Fail 9:e2314. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002314
CAS
Article
PubMed
Google Scholar
Ferguson JF (2013) Meat-loving microbes: Do steak-eating bacteria promote atherosclerosis? Circ Cardiovasc Genet 6:308–309. https://doi.org/10.1161/CIRCGENETICS.113.000213
Article
PubMed
Google Scholar
Trøseid M, Ueland T, Hov JR et al (2015) Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med 277:717–726. https://doi.org/10.1111/joim.12328
CAS
Article
PubMed
Google Scholar
Tang WHW, Wang Z, Fan Y et al (2014) Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol 64:1908–1914. https://doi.org/10.1016/j.jacc.2014.02.617
CAS
Article
PubMed
Google Scholar
Schuett K, Kleber ME, Scharnagl H et al (2017) Trimethylamine-N-oxide and heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol 70:3202–3204. https://doi.org/10.1016/j.jacc.2017.10.064
Article
PubMed
Google Scholar
Shan Z et al (2017) Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes. Am J Clin Nutr. https://doi.org/10.3945/ajcn.117.157107
Article
PubMed
Google Scholar
Kim MH, Kang SG, Park JH et al (2013) Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Baillieres Clin Gastroenterol 145:396–406. https://doi.org/10.1053/j.gastro.2013.04.056 (e1–10)
CAS
Article
Google Scholar
MacFabe DF et al (2011) Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder. Behav Brain Res 217:47–54. https://doi.org/10.1016/j.bbr.2010.10.005
CAS
Article
PubMed
Google Scholar
Priyadarshini M, Wicksteed B, Schiltz GE et al (2016) SCFA receptors in pancreatic β cells: novel diabetes targets? Trends Endocrinol Metab. https://doi.org/10.1016/j.tem.2016.03.011
Article
PubMed
PubMed Central
Google Scholar
Kim CH, Park J, Kim M (2014) Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Netw 14:277–288. https://doi.org/10.4110/in.2014.14.6.277
Article
PubMed
PubMed Central
Google Scholar
Menzel T et al (2004) Butyrate inhibits leukocyte adhesion to endothelial cells via modulation of VCAM-1. Inflamm Bowel Dis 10:122–128
Article
PubMed
Google Scholar
Aguilar EC, Leonel AJ, Teixeira LG et al (2014) Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation. Nutr Metab Cardiovasc Dis 24:606–613. https://doi.org/10.1016/j.numecd.2014.01.002
CAS
Article
PubMed
Google Scholar
Wu H, Esteve E, Tremaroli V et al (2017) Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 23:850–858. https://doi.org/10.1038/nm.4345
CAS
Article
PubMed
Google Scholar
Arpaia N, Campbell C, Fan X et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T‑cell generation. Nature. https://doi.org/10.1038/nature12726
Article
PubMed
PubMed Central
Google Scholar
Wilck N, Matus MG, Kearney SM et al (2017) Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551:585–589. https://doi.org/10.1038/nature24628
CAS
Article
PubMed
PubMed Central
Google Scholar
Ivanov II et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. https://doi.org/10.1016/j.cell.2009.09.033
Article
PubMed
PubMed Central
Google Scholar
Cavallari JF, Denou E, Foley KP et al (2016) Different Th17 immunity in gut, liver, and adipose tissues during obesity: the role of diet, genetics, and microbes. Gut Microbes 7:82–89. https://doi.org/10.1080/19490976.2015.1127481
CAS
Article
PubMed
PubMed Central
Google Scholar
Livanos AE, Greiner TU, Vangay P et al (2016) Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat Rev Microbiol 1:16140. https://doi.org/10.1038/nmicrobiol.2016.140
CAS
Article
Google Scholar
Gong F, Wu J, Zhou P et al (2016) Interleukin-22 might act as a double-edged sword in type 2 diabetes and coronary artery disease. Mediators Inflamm 2016:8254797. https://doi.org/10.1155/2016/8254797
CAS
Article
PubMed
PubMed Central
Google Scholar
Abdel-Moneim A, Bakery HH, Allam G (2018) The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomed Pharmacother 101:287–292. https://doi.org/10.1016/j.biopha.2018.02.103
CAS
Article
PubMed
Google Scholar
Myers JM, Cooper LT, Kem DC et al (2016) Cardiac myosin-Th17 responses promote heart failure in human myocarditis. JCI Insight 1. https://doi.org/10.1172/jci.insight.85851
Article
PubMed
PubMed Central
Google Scholar
Li J et al (2010) The treg/Th17 imbalance in patients with idiopathic dilated cardiomyopathy. Scand J Immunol 71:298–303. https://doi.org/10.1111/j.1365-3083.2010.02374.x
CAS
Article
PubMed
Google Scholar
Ridlon JM, Kang D‑J, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res. https://doi.org/10.1194/jlr.R500013-JLR200
Article
PubMed
Google Scholar
Postler TS, Ghosh S (2017) Understanding the Holobiont: How microbial metabolites affect human health and shape the immune system. Cell Metab 26(1):110–130
CAS
Article
PubMed
PubMed Central
Google Scholar
Ryan PM, Stanton C, Caplice NM (2017) Bile acids at the cross-roads of gut microbiome-host cardiometabolic interactions. Diabetol Metab Syndr 9:1–12. https://doi.org/10.1186/s13098-017-0299-9
CAS
Article
Google Scholar
Chávez-Talavera O et al (2017) Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Baillieres Clin Gastroenterol. https://doi.org/10.1053/j.gastro.2017.01.055
Article
Google Scholar
Charach G, Argov O, Geiger K et al (2018) Diminished bile acids excretion is a risk factor for coronary artery disease: 20-year follow up and long-term outcome. Therap Adv Gastroenterol 11:1756283X17743420. https://doi.org/10.1177/1756283X17743420
Article
PubMed
Google Scholar
Jadhav K, Xu Y, Xu Y et al (2018) Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR. Mol Metab 9:131–140. https://doi.org/10.1016/j.molmet.2018.01.005
CAS
Article
PubMed
PubMed Central
Google Scholar
Bozadjieva N, Heppner KM, Seeley RJ (2018) Targeting FXR and FGF19 to treat metabolic diseases-lessons learned from bariatric surgery. Diabetes. https://doi.org/10.2337/dbi17-0007
Article
PubMed
PubMed Central
Google Scholar
Vrieze A et al (2014) Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol 60:824–831. https://doi.org/10.1016/j.jhep.2013.11.034
CAS
Article
PubMed
Google Scholar
Huffman KM, Shah SH, Stevens RD et al (2009) Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care. https://doi.org/10.2337/dc08-2075
Article
PubMed
PubMed Central
Google Scholar
Newgard CB, An J, Bain JR et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. https://doi.org/10.1016/j.cmet.2009.02.002
Article
PubMed
PubMed Central
Google Scholar
Wang TJ et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med. https://doi.org/10.1038/nm.2307
Article
PubMed
PubMed Central
Google Scholar
Bhattacharya S, Granger CB, Craig D et al (2014) Validation of the association between a branched chain amino acid metabolite profile and extremes of coronary artery disease in patients referred for cardiac catheterization. Atherosclerosis. https://doi.org/10.1016/j.atherosclerosis.2013.10.036
Article
PubMed
Google Scholar
Shah SH et al (2012) Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease. Am Heart J. https://doi.org/10.1016/j.ahj.2012.02.005
Article
PubMed
PubMed Central
Google Scholar
Neinast MD, Jang C, Hui S et al (2018) Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab. https://doi.org/10.1016/j.cmet.2018.10.013
Article
PubMed
PubMed Central
Google Scholar
Sun H, Olson KC, Gao C et al (2016) Catabolic defect of branched-chain amino acids promotes heart failure. Circulation 133:2038–2049. https://doi.org/10.1161/CIRCULATIONAHA.115.020226
CAS
Article
PubMed
PubMed Central
Google Scholar
Kappel BA et al (2017) Effect of Empagliflozin on the metabolic signature of patients with type 2 diabetes mellitus and cardiovascular disease. Circulation 136:969–972. https://doi.org/10.1161/CIRCULATIONAHA.117.029166
CAS
Article
PubMed
Google Scholar
Lehrke M, Marx N (2011) Cardiovascular effects of incretin-based therapies. Rev Diabet Stud 8:382–391. https://doi.org/10.1900/RDS.2011.8.382
Article
PubMed
PubMed Central
Google Scholar
Grasset E, Puel A, Charpentier J et al (2017) A specific gut Microbiota Dysbiosis of type 2 diabetic mice induces GLP-1 resistance through an enteric NO-dependent and gut-brain axis mechanism. Cell Metab 25:1075–1090.e5. https://doi.org/10.1016/j.cmet.2017.04.013
CAS
Article
PubMed
Google Scholar
Chimerel C et al (2014) Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep 9:1202–1208. https://doi.org/10.1016/j.celrep.2014.10.032
CAS
Article
PubMed
PubMed Central
Google Scholar
Korpela K, Salonen A, Virta LJ et al (2016) Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun 7:1–8. https://doi.org/10.1038/ncomms10410
CAS
Article
Google Scholar
Saari A et al (2015) Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatr Electron Pages 135:617–626. https://doi.org/10.1542/peds.2014-3407
Article
Google Scholar
Surawicz CM, Brandt LJ, Binion DG et al (2013) Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol 108:478–498. https://doi.org/10.1038/ajg.2013.4 (quiz 499)
CAS
Article
PubMed
Google Scholar
Borody TJ, Paramsothy S, Agrawal G (2013) Fecal microbiota transplantation: indications, methods, evidence, and future directions. Curr Gastroenterol Rep 15:337. https://doi.org/10.1007/s11894-013-0337-1
Article
PubMed
PubMed Central
Google Scholar
Vrieze A et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Baillieres Clin Gastroenterol 143:913–916.e7. https://doi.org/10.1053/j.gastro.2012.06.031
CAS
Article
Google Scholar
Cani PD, Neyrinck AM, Fava F et al (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50:2374–2383. https://doi.org/10.1007/s00125-007-0791-0
CAS
Article
PubMed
Google Scholar