Main findings
To our knowledge, this is the first meta-analysis to systematically evaluate changes in left cardiac structure and function in OSAS patients. Particularly, the effect of systemic hypertension was eliminated in the current analysis by excluding those studies with hypertensive patients enrolled, since many ultrasonic parameters may be affected by hypertension. Thus, we demonstrate that OSAS induces cardiac abnormality independent of systemic hypertension. Finally, 17 case–control studies were included in this meta-analysis with a total of 747 patients with OSAS and 426 controls.
We found that alterations in the echocardiographic parameters of LV and LA remodeling, including an increase in LVEDD, LVESD, LVM, LAD, and LAVI, were important features in OSA patients without major comorbidities, which indicated that OSAS resulted in enlargement and hypertrophy of the left ventricle and atrium. Moreover, significant decreases in LVEF were observed in OSAS patients. It should be noted that the alterations in LVEF seemed not to be remarkable enough to induce obvious clinical symptoms of LV dysfunction.
In the analysis of LVEF, we found significant heterogeneity between studies. The heterogeneity is to be expected given the variation in disease severity. However, subgroup analysis still showed significant heterogeneity, which may stem from the variety of studies conducted by different teams at various geographic locations as well as the differences in the patient populations.
LV remodeling and dysfunction in OSAS patients
It has been reported that intermittent hypoxia could induce LV remodeling, which was regarded as the basis of LV dysfunction caused by OSAS [15]. Although the negative effect of intermittent hypoxia on the cardiovascular system has not been completely clarified, multiple putative mechanisms including sympathetic overactivation, oxidative stress, inflammation, metabolic deregulation, and endothelial dysfunction have been suggested to be involved.
Hypoxemia, hypercapnia, and acidosis, induced by chronic intermittent hypoxia in OSAS patients, could activate the sympathetic nervous system. Prior studies showed that patients with metabolic syndrome and comorbid OSAS have a higher sympathetic drive than do patients with metabolic syndrome without OSAS [22, 49]. Furthermore, Scala et al. reported a significant correlation between OSAS and cardiac adrenergic impairment in patients with heart failure [43]. The exposure to intermittent hypoxia and hypercapnia, elicited by OSAS, increases muscle sympathetic nerve activity (MSNA) acutely during sleep [10], and the over-activation of the sympathetic nervous system is persistent even after removal of the hypoxic stimulus [4, 54]. Bradley et al. reported that LV transmural pressure was increased in response to the generation of negative intrathoracic pressure (Pit) and the elevation of systemic blood pressure secondary to hypoxia-induced sympathetic nervous system activation [11]. This results in the reduction of LV preload and increased afterload, which can directly affect LV systolic function [26]. The combination of increased LF afterload and increased heart rate (HR) promotes myocardial oxygen demand, thus brings a higher risk of cardiac ischemia and arrhythmias, and chronically contributes to LV hypertrophy and failure. It is well known that the sympathetic nervous system is the most prominent among neurohormonal mechanisms in HF, which pushes the heart to work at an overloaded level, and confers significant toxicity to the failing heart and increases morbidity and mortality in chronic decompensated HF [32].
In addition, systemic inflammation triggered by OSAS plays an important role in intermittent hypoxia-induced LV remodeling, as was confirmed by elevated plasma levels of tumor necrosis factor-alpha (TNF-α) and interleukin‑6 (IL-6) in patients with OSA [34]. Inflammatory response and free radical generation could cause an imbalance between myocardial oxidation and antioxidant activity, result in myocardial injury, and increase susceptibility to myocardial ischemia [19]. The consequent myocardial ischemia leads to a shortage in ATP production, inorganic phosphate accumulation, and myocardial acidosis, which inhibit excitement–contraction coupling and cause regional ventricular systolic dysfunction [40]. Besides, in the case of OSAS, exposure to intermittent hypoxia elevates blood pressure, and thus may induce functional, mechanical, and structural changes in the aortic wall in response to hemodynamic and biomechanical stress, which has been verified in mice [12]. Hypoxia stimulates the elastic fiber network with disorganization, fragmentation, and estrangement between the endpoints of disrupted fibers, and induces collagen and mucoid interlaminar accumulation in the extracellular matrix as well as LF perivascular fibrosis. These cardiovascular remodeling events induced by hypoxia were normalized after continuous positive airway pressure (CPAP) treatment.
The hemodynamic changes associated with obesity might contribute to the increased LV mass observed in patients with OSA. Of interest, Parisi et al. have pointed out that HF patients with sleep disordered-breathing have higher epicardial adipose tissue (EAT) thickness values than do HF patients without nocturnal apneas [39], which indicates EAT might be a pathophysiological link between OSAS and increased cardiovascular risk [31, 33]. Besides, CPAP therapy reduces EAT and significantly ameliorates cardiometabolic parameters in obese OSAS patients [29]. Moreover, EAT is a source of several adipocytokines and directly affects the myocardium through vasocrine and paracrine mechanisms [24]. Exposure to hypoxia leads to higher production of factor-1a and Fos-like antigen (FOSL) 2, resulting in up-regulation of leptin expression in the EAT, along with increased vascularization, inflammation, and fibrosis [16]. It has been demonstrated that EAT thickness has a high correlation with sympathetic nervous system hyperactivity and it is a local source of catecholamines in HF patients, which suggests sympathetic nervous system hyperactivity is a potential pathophysiological link between sleep apneas and EAT in HF [38].
Overall, increased sympathetic activity, endothelial dysfunction, systemic inflammation, oxidative stress, and metabolic anomalies induced by intermittent hypoxia play major roles in the progression of LV remodeling and dysfunction.
LA remodeling in OSAS patients
Our analysis revealed a significant increase in LA volume in patients with OSAS. Left atrial enlargement was considered to occur owing to elevated LV pressure and diastolic dysfunction. Sympathetic activation, decreased parasympathetic tone, and inflammation associated with intermittent hypoxia might contribute to atrial structural and electrical remodeling.
It should be noted that recent evidence has indicated OSAS patients might be predisposed to the development and recurrence of atrial fibrillation [48]. The forced inspiration-induced acute LA dilation related to diastolic dysfunction may be an important component of the arrhythmogenic substrate for atrial fibrillation during sleep apnea episodes [9, 25]. More explorations of treatment for OSAS, such as CPAP, are expected to alter the anticipated frequency of OSAS-related cardiac arrhythmias.
RV remodeling and dysfunction in OSAS patients
The correlation between OSAS and right ventricular (RV) remodeling and dysfunction has also raised intense interest from researchers, but the conclusions from various have differed. Yang et al. found the inner diameters and the anterior wall thickness of the RV were increased in patients with severe OSAS and deteriorated as the disease course progressed [55]. Vitarelli et al. reported that RV dilatation and dysfunction were significantly associated with AHI and the severity and frequency of apnea episodes [52]. Similarly, several other studies reported that OSAS patients presented with right cardiac dysfunction [1, 30]. By contrast, other studies did not reveal any significant changes in RV morphology and function in OSA patients [14, 17].
Several mechanisms were raised to illustrate the potential relationship between OSAS and RV changes. Prior studies suggested that permanent pulmonary hypertension was an important factor. Repetitive nocturnal arterial oxygen desaturation and hypercapnia lead to pulmonary vascular endothelium remodeling and vasoconstriction, thus increasing pulmonary artery pressure [42], leading to RV overload and inducing the release of inflammatory factors. As a result, the compensatory hypertrophic RV gradually presents with dysfunction. However, recent studies pointed out that RV alternations occurred in early stage of OSAS in the absence of pulmonary hypertension [30, 52], indicating that pulmonary hypertension was not the only cause. Some other studies reported the intrathoracic negative pressure against an occluded airway increased venous return and volume overload, and consequently expanded and remodeled the RV [1]. Another possible mechanism is that intermittent hypoxia and CO2 retention stimulated central and peripheral chemoreceptors and increased sympathetic nerve activity, which induced RV dysfunction. In addition, LV dysfunction induced by OSAS may also lead to RV dysfunction, since there is a close anatomical association between the two ventricles [35].
Since the effects of OSAS on the LV and RV may be different, we should conduct further analyses to uncover the precise correlation and mechanism between OSAS and RV remodeling and dysfunction.
Limitations
The present study was a clinical observational study. The follow-up time was not controlled. In our opinion, the duration of OSAS might be a relevant factor when assessing the effect of OSAS on cardiac structure and function, but it is very difficult to assess the duration of OSAS owing the rate of missed diagnoses in the clinic. Besides, this analysis involved no outcome data such as survival rate and risk of cardiovascular events during follow-up. Further research is needed to clarify the effect of OSAS on the long-term prognosis of patients. Additional analyses may identify the correlation and precise mechanisms between OSAS and RV remodeling.