Advertisement

Herz

pp 1–7 | Cite as

Comparison of procedural success between two radial sheaths

Comparison of the 6-Fr Glidesheath Slender to 6-Fr standard sheath
  • B. Gul
  • M. Stolar
  • B. Stair
  • P. Hermany
  • S. Willis
  • C. Mena-Hurtado
  • R. Attaran
Original articles

Abstract

Background

The most common cause of procedural failure in cardiac catheterization using the transradial approach is radial artery spasm. The aim of this study was to compare the procedural success rate of the 6‑Fr Glidesheath Slender with the 6‑Fr standard sheath in transradial coronary angiography and intervention.

Methods

Patients who underwent percutaneous coronary angiography via the transradial approach through placement of a 6-Fr Glidesheath Slender or a 6-Fr standard sheath for primary radial access were prospectively enrolled in the study.

Results

The study included 200 cases: 76 patients undergoing percutaneous coronary angiography with the Glidesheath Slender and 124 patients with the standard sheath. Failed procedures were recorded for 19 patients (9.5%), defined as inability to complete the procedure via the primary access. There was no difference in the percentage of failed cases between the Glidesheath Slender and standard sheath groups (10.5% vs. 8.9%, OR = 1.21, p = 0.8). More cases of spasm were observed in the Glidesheath Slender group compared with the standard sheath group, which was not statistically significant (7.9% vs. 5.7%, OR = 1.43, p = 0.56). Smoking, hyperlipidemia, and age influenced the procedural outcome in the Glidesheath Slender group, while body mass index, sex, and smoking impacted the procedural outcome in the standard sheath group.

Conclusion

There is no difference in procedural success rates, as defined by the ability to complete the procedure via primary radial access, between the 6‑Fr Glidesheath Slender and the 6‑Fr standard sheath. Our study suggests that the patient characteristics that elevate the risk of procedural failure for Glidesheath Slender may differ from those for the standard sheath.

Keywords

Angioplasty Angiography Catheterization Percutaneous coronary intervention Radial artery 

Vergleich des prozeduralen Erfolgs zwischen 2 Radialisschleusen

6‑Fr-Glidesheath-Slender-Schleuse vs. 6‑Fr-Standardschleuse

Zusammenfassung

Hintergrund

Die häufigste Ursache des prozeduralen Versagens bei der Herzkatheterisierung unter Verwendung des transradialen Zugangswegs ist ein Spasmus der A. radialis. Ziel der vorliegenden Studie war es, die prozedurale Erfolgsrate der 6‑Fr-Glidesheath-Slender-Schleuse mit der 6‑Fr-Standardschleuse bei der transradialen Koronarangiographie und -intervention zu vergleichen.

Methoden

In die Studie wurden prospektiv Patienten aufgenommen, bei denen eine perkutane Koronarangiographie über den transradialen Zugangsweg unter Platzierung einer 6‑Fr-Glidesheath-Slender-Schleuse oder einer 6‑Fr-Standardschleuse für den primären Zugang zur A. radialis durchgeführt wurde.

Ergebnisse

Die Studie umfasste 200 Fälle: 76 Patienten mit perkutaner Koronarangiographie unter Einsatz der Glidesheath-Slender-Schleuse und 124 Patienten mit Standardschleuse. Ein misslungener Eingriff wurde bei 19 Patienten dokumentiert (9,5 %) und war definiert als Unmöglichkeit, den Eingriff über den primären Zugang bis zum Ende durchzuführen. Es bestand kein Unterschied beim Anteil misslungener Eingriffe zwischen der Glidesheath-Slender-Gruppe und der Gruppe mit Standardschleuse (10,5 vs. 8,9 %; Odds Ratio, OR = 1,21; p = 0,8). In der Glidesheath-Slender-Gruppe wurden mehr Fälle mit Spasmus beobachtet als in der Gruppe mit Standardschleuse, jedoch ohne statistische Signifikanz (7,9 vs. 5,7 %; OR = 1,43; p = 0,56). Rauchen, Hyperlipidämie und Alter beeinflussten das prozedurale Ergebnis in der Glidesheath-Slender-Gruppe, während Body-Mass-Index, Geschlecht und Rauchen einen Einfluss auf das prozedurale Ergebnis in der Gruppe mit Standardschleuse hatten.

Schlussfolgerung

Zwischen der Glidesheath-Slender-Schleuse und der Standardschleuse bestand kein Unterschied bei den Raten des prozeduralen Erfolgs, der definiert war als in der Lage zu sein, den Eingriff über den primären Zugang zur A. radialis bis zum Ende durchzuführen. Die vorliegende Studie liefert Hinweise darauf, dass die Patientenmerkmale, die das Risiko eines prozeduralen Versagens für die Glidesheath-Slender-Schleuse erhöhen, sich möglicherweise von denen für die Standardschleuse unterscheiden.

Schlüsselwörter

Angioplastie Angiographie Katheterisierung Perkutane Koronarintervention A. radialis 

Notes

Compliance with ethical guidelines

Conflict of interest

B. Gul, M. Stolar, B. Stair, P. Hermany, S. Willis, C. Mena-Hurtado, and R. Attaran declare that they have no competing interests.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Jolly SS, Yusuf S, Cairns J et al (2011) Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet 377(9775):1409–1420CrossRefPubMedGoogle Scholar
  2. 2.
    Bertrand OF, Belisle P, Joyal D et al (2012) Comparison of transradial and femoral approaches for percutaneous coronary interventions: a systematic review and hierarchical Bayesian meta-analysis. Am Heart J 163(4):632–648.  https://doi.org/10.1016/j.ahj.2012.01.015 CrossRefPubMedGoogle Scholar
  3. 3.
    Mitchell MD, Hong JA, Lee BY et al (2012) Systematic review and cost-benefit analysis of radial artery access for coronary angiography and intervention. Circ Cardiovasc Qual Outcomes 5(4):454–462CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Romagnoli E, Biondi-Zoccai G, Sciahbasi A et al (2012) Radial versus femoral randomized investigation in ST-segment elevation acute coronary syndrome: the RIFLE-STEACS (Radial Versus Femoral Randomized Investigation in ST-Elevation Acute Coronary Syndrome) study. J Am Coll Cardiol 60(24):2481–2489.  https://doi.org/10.1016/j.jacc.2012.06.017 CrossRefPubMedGoogle Scholar
  5. 5.
    Valgimigli M, Gagnor A, Calabro P et al (2015) Radial versus femoral access in patients with acute coronary syndromes undergoing invasive management: a randomised multicentre trial. Lancet 385(9986):2465–2476CrossRefPubMedGoogle Scholar
  6. 6.
    Ibanez B, James S, Agewall S et al (2018) 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 39(2):119–177.  https://doi.org/10.1093/eurheartj/ehx393 CrossRefPubMedGoogle Scholar
  7. 7.
    Levine GN, Bates ER, Blankenship JC et al (2016) 2015 ACC/AHA/SCAI focused update on primary percutaneous coronary intervention for patients with ST-elevation myocardial infarction: an update of the 2011 ACCF/AHA/SCAI guideline for Percutaneous coronary intervention and the 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction. J Am Coll Cardiol 67(10):1235–1250.  https://doi.org/10.1016/j.jacc.2015.10.005 CrossRefPubMedGoogle Scholar
  8. 8.
    Feldman DN, Swaminathan RV, Kaltenbach LA et al (2013) Adoption of radial access and comparison of outcomes to femoral access in percutaneous coronary intervention: an updated report from the national cardiovascular data registry (2007–2012). Circulation 127(23):2295–2306CrossRefPubMedGoogle Scholar
  9. 9.
    Ball WT, Sharieff W, Jolly SS et al (2011) Characterization of operator learning curve for transradial coronary interventions. Circ Cardiovasc Interv 4(4):336–341CrossRefPubMedGoogle Scholar
  10. 10.
    Ruiz-Salmeron RJ, Mora R, Velez-Gimon M et al (2005) Radial artery spasm in transradial cardiac catheterization. Assessment of factors related to its occurrence, and of its consequences during follow-up. Rev Esp Cardiol 58(5):504–511CrossRefPubMedGoogle Scholar
  11. 11.
    Caputo RP, Tremmel JA, Rao S et al (2011) Transradial arterial access for coronary and peripheral procedures: executive summary by the Transradial Committee of the SCAI. Catheter Cardiovasc Interv 78(6):823–839CrossRefPubMedGoogle Scholar
  12. 12.
    Bertrand OF, Rao SV, Pancholy S et al (2010) Transradial approach for coronary angiography and interventions: results of the first international transradial practice survey. JACC Cardiovasc Interv 3(10):1022–1031.  https://doi.org/10.1016/j.jcin.2010.07.013 CrossRefPubMedGoogle Scholar
  13. 13.
    Dahm JB, Vogelgesang D, Hummel A et al (2002) A randomized trial of 5 vs. 6 French transradial percutaneous coronary interventions. Catheter Cardiovasc Interv 57(2):172–176CrossRefPubMedGoogle Scholar
  14. 14.
    Gwon HC, Doh JH, Choi JH et al (2006) A 5 Fr catheter approach reduces patient discomfort during transradial coronary intervention compared with a 6 Fr approach: a prospective randomized study. J Interv Cardiol 19(2):141–147.  https://doi.org/10.1111/j.1540-8183.2006.00121.x CrossRefPubMedGoogle Scholar
  15. 15.
    Aminian A, Dolatabadi D, Lefebvre P et al (2014) Initial experience with the Glidesheath Slender for transradial coronary angiography and intervention: a feasibility study with prospective radial ultrasound follow-up. Catheter Cardiovasc Interv 84(3):436–442.  https://doi.org/10.1002/ccd.25232 CrossRefPubMedGoogle Scholar
  16. 16.
    Goldberg SL, Renslo R, Sinow R, French WJ (1998) Learning curve in the use of the radial artery as vascular access in the performance of percutaneous transluminal coronary angioplasty. Cathet Cardiovasc Diagn 44(2):147–152CrossRefPubMedGoogle Scholar
  17. 17.
    Guo SFM (2010) Propensity score analysis. Statistical methods and applications. SAGE, Thousand OaksGoogle Scholar
  18. 18.
    Rosenbaum PRR et al (1984) Reducing bias in observational studies using subclassification on the propensity score. J Am Stat Assoc 79(387):516–524CrossRefGoogle Scholar
  19. 19.
    Touw WG, Bayjanov JR, Overmars L et al (2013) Data mining in the life sciences with random forest: a walk in the park or lost in the jungle? Brief Bioinformatics 14(3):315–326PubMedCrossRefGoogle Scholar
  20. 20.
    Strobl C, Malley J, Tutz G (2009) An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol Methods 14(4):323–348.  https://doi.org/10.1037/a0016973 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kristic I, Lukenda J (2011) Radial artery spasm during transradial coronary procedures. J Invasive Cardiol 23(12):527PubMedGoogle Scholar
  22. 22.
    Valsecchi O, Vassileva A, Musumeci G et al (2006) Failure of transradial approach during coronary interventions: anatomic considerations. Catheter Cardiovasc Interv 67(6):870–878CrossRefPubMedGoogle Scholar
  23. 23.
    Aminian A, Saito S, Takahashi A et al (2017) Comparison of a new slender 6 french sheath with a standard 5 french sheath for transradial coronary angiography and intervention: a randomized multicenter trial the RAP and BEAT (Radial Artery Patency and Bleeding, Efficacy, Adverse evenT) Trial. EuroIntervention. 10.4244/EIJ-D-16-00816CrossRefPubMedGoogle Scholar
  24. 24.
    Hamon M, Pristipino C, Di Mario C et al (2013) Consensus document on the radial approach in percutaneous cardiovascular interventions: position paper by the European Association of Percutaneous Cardiovascular Interventions and Working Groups on Acute Cardiac Care** and Thrombosis of the European Society of Cardiology. EuroIntervention 8(11):1242–1251CrossRefPubMedGoogle Scholar
  25. 25.
    Carvalho MS, Cale R, Goncalves Pde A et al (2015) Predictors of conversion from radial into femoral access in cardiac catheterization. Arq Bras Cardiol 104(5):401–408PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Rathore S, Stables RH, Pauriah M et al (2010) Impact of length and hydrophilic coating of the introducer sheath on radial artery spasm during transradial coronary intervention: a randomized study. JACC Cardiovasc Interv 3(5):475–483.  https://doi.org/10.1016/j.jcin.2010.03.009 CrossRefPubMedGoogle Scholar
  27. 27.
    Varenne O, Jegou A, Cohen R et al (2006) Prevention of arterial spasm during percutaneous coronary interventions through radial artery: the SPASM study. Catheter Cardiovasc Interv 68(2):231–235CrossRefPubMedGoogle Scholar
  28. 28.
    Goldsmit A, Kiemeneij F, Gilchrist IC et al (2014) Radial artery spasm associated with transradial cardiovascular procedures: results from the RAS registry. Catheter Cardiovasc Interv 83(1):E32–E36CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • B. Gul
    • 1
  • M. Stolar
    • 2
  • B. Stair
    • 1
  • P. Hermany
    • 1
  • S. Willis
    • 1
  • C. Mena-Hurtado
    • 1
  • R. Attaran
    • 1
  1. 1.Division of Cardiovascular Medicine, Department of Internal MedicineYale School of MedicineNew HavenUSA
  2. 2.Yale Center of Analytical SciencesYale School of Public HealthNew HavenUSA

Personalised recommendations