Skip to main content
Log in

Plasma osteopontin levels in patients with dilated and hypertrophic cardiomyopathy

Osteopontinspiegel im Plasma bei dilatativer und hypertrophischer Kardiomyopathie

  • Original articles
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Background

Osteopontin (OPN) is an extracellular matrix glycoprotein that plays a role in a variety of cellular activities associated with inflammatory and fibrotic responses. Increased OPN levels in myocardium and plasma have been demonstrated in patients with dilated cardiomyopathy (DCM). However, nothing is known about OPN levels in patients with hypertrophic cardiomyopathy (HCM). Therefore, the aim of our study was to compare plasma OPN levels in patients with these two most common cardiomyopathies.

Patients and methods

We examined plasma OPN as well as creatinine, C‑reactive protein (CRP), brain-type natriuretic peptide (BNP), and troponin I levels in 64 patients with DCM, 43 patients with HCM, and 75 control subjects. Transthoracic echocardiography was also performed on all cardiomyopathy patients.

Results

Plasma OPN levels were significantly elevated in patients with DCM compared with HCM patients (95 ± 43 vs. 57 ± 21 ng/ml; p < 0.001) and control subjects (54 ± 19 ng/ml; p < 0.001); however, there was no difference between HCM patients and control subjects. New York Heart Association (NYHA) class III or IV disease was more frequently present in DCM patients than in HCM subjects (44 % vs. 2 %, p < 0.0001). In multivariate analysis, BNP and CRP levels together with NYHA class were found to be significant predictors of plasma OPN levels in DCM patients (p = 0.002, p = 0.029, and p < 0.001 for BNP, CRP, and NYHA, respectively).

Conclusion

Plasma OPN levels were associated with overall heart failure severity rather than with specific cardiomyopathy subtype in patients suffering from DCM or HCM, respectively.

Zusammenfassung

Hintergrund

Osteopontin (OPN) ist ein Glykoprotein der extrazellulären Matrix, das bei verschiedenen zellulären Prozessen im Rahmen entzündlicher und fibrotischer Reaktionen eine Rolle spielt. Erhöhte OPN-Spiegel im Myokard und im Plasma wurden bei Patienten mit dilatativer Kardiomyopathie (DCM) nachgewiesen. Es ist jedoch nichts über die OPN-Spiegel bei Patienten mit hypertrophischer Kardiomyopathie (HCM) bekannt. Daher war es Ziel der vorliegenden Studie, die OPN-Spiegel bei Patienten mit diesen beiden häufigsten Kardiomyopathien zu vergleichen.

Patienten und Methoden

Es wurden die Werte für OPN im Plasma sowie Kreatinin, C‑reaktives Protein (CRP), BNP („brain-type natriuretic peptide“) und Troponin I bei 64 Patienten mit DCM, 43 Patienten mit HCM und 75 Kontrollen ermittelt. Auch wurde bei allen Kardiomyopathiepatienten eine transthorakale Echokardiographie durchgeführt.

Ergebnisse

Die OPN-Werte im Plasma waren bei Patienten mit DCM im Vergleich zu HCM-Patienten (95 ± 43 vs. 57 ± 21 ng/ml; p < 0,001) und Kontrollen (54 ± 19 ng/ml; p < 0,001) signifikant erhöht; jedoch bestand kein Unterschied zwischen HCM-Patienten und Kontrollen. Eine Erkrankung der Klasse III oder IV gemäß New York Heart Association (NYHA) lag häufiger bei Patienten mit DCM als bei Patienten mit HCM vor (44 % vs. 2 %, p < 0,0001). In der multivariaten Analyse erwiesen sich die BNP- und CRP-Werte zusammen mit der NYHA-Klasse als signifikante Prädiktoren der OPN-Werte im Plasma bei DCM-Patienten (p = 0,002 für BNP; p = 0,029 für CRP bzw. p < 0,001 für NYHA).

Schlussfolgerung

Die OPN-Spiegel im Plasma waren bei Patienten mit DCM oder HCM eher mit dem Gesamtschweregrad der Herzinsuffizienz als mit spezifischen Subtypen der Kardiomyopathie assoziiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gravallese EM (2003) Osteopontin: a bridge between bone and the immune system. J Clin Invest 112:147–149. https://doi.org/10.1161/01.HYP.0000148459.25908.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Klingel K, Kandolf R (2010) Osteopontin: a biomarker to predict the outcome of inflammatory heart disease. Semin Thromb Hemost 36:195–202. https://doi.org/10.1055/s-0030-1251504

    Article  CAS  PubMed  Google Scholar 

  3. Oldberg A, Franzén A, Heinegård D (1986) Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci USA 83:8819–8823

    Article  CAS  Google Scholar 

  4. Graf K, Stawowy P (2004) Osteopontin: a protective mediator of cardiac fibrosis? Hypertension 44:809–810. https://doi.org/10.1161/01.HYP.0000148459.25908.49

    Article  CAS  PubMed  Google Scholar 

  5. Inoue M, Shinohara ML (2011) Intracellular osteopontin (iOPN) and immunity. Immunol Res 49:160–172. https://doi.org/10.1007/s12026-010-8179-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mazzali M, Kipari T, Ophascharoensuk V et al (2002) Osteopontin – a molecule for all seasons. QJM 95:3–13

    Article  CAS  Google Scholar 

  7. O’Regan AW, Chupp GL, Lowry JA et al (1999) Osteopontin is associated with T cells in sarcoid granulomas and has T cell adhesive and cytokine-like properties in vitro. J Immunol 162:1024–1031

    PubMed  Google Scholar 

  8. Singh M, Foster CR, Dalal S, Singh K (2009) Osteopontin: role in extracellular matrix deposition and myocardial remodelling post-MI. J Mol Cell Cardiol 48:538–543. https://doi.org/10.1016/j.yjmcc.2009.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singh M, Foster CR, Dalal S, Singh K (2010) Role of osteopontin in heart failure associated with aging. Heart Fail Rev 15:487–494. https://doi.org/10.1007/s10741-010-9158-6

    Article  CAS  PubMed  Google Scholar 

  10. Singh M, Dalal S, Singh K (2014) Osteopontin: at the cross-roads of myocyte survival and myocardial function. Life Sci 118:1–6. https://doi.org/10.1016/j.lfs.2014.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Singh K, Sirokman G, Communal C et al (1999) Myocardial osteopontin expression coincides with the development of heart failure. Hypertension 33:663–670

    Article  CAS  Google Scholar 

  12. Behnes M, Brueckmann M, Lang S et al (2013) Diagnostic and prognostic value of osteopontin in patients with acute congestive heart failure. Eur J Heart Fail 15:1390–1400. https://doi.org/10.1093/eurjhf/hft112

    Article  CAS  PubMed  Google Scholar 

  13. Stawowy P, Blaschke F, Pfautsch P et al (2002) Increased myocardial expression of osteopontin in patients with advanced heart failure. Eur J Heart Fail 4:139–146

    Article  CAS  Google Scholar 

  14. Rosenberg M, Zugck C, Nelles M et al (2008) Osteopontin, a new prognostic biomarker in patients with chronic heart failure. Circ Heart Fail 1:43–49. https://doi.org/10.1161/CIRCHEARTFAILURE.107.746172

    Article  CAS  PubMed  Google Scholar 

  15. Satoh M, Nakamura M, Akatsu T et al (2005) Myocardial osteopontin expression is associated with collagen fibrillogenesis in human dilated cardiomyopathy. Eur J Heart Fail 7:755–762. https://doi.org/10.1016/j.ejheart.2004.10.019

    Article  CAS  PubMed  Google Scholar 

  16. Elliott P, Andersson B, Arbustini E et al (2008) Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29:270–276. https://doi.org/10.1093/eurheartj/ehm342

    Article  PubMed  Google Scholar 

  17. Elliott PM, Anastasakis A, Borger MA et al (2014) 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy. Eur Heart J 35:2733–2779. https://doi.org/10.1093/eurheartj/ehu284

    Article  PubMed  Google Scholar 

  18. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  Google Scholar 

  19. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16:233–270. https://doi.org/10.1093/ehjci/jev014

    Article  PubMed  Google Scholar 

  20. Devereux RB, Alonso DR, Lutas EM et al (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57:450–458

    Article  CAS  Google Scholar 

  21. Nagueh SF, Appleton CP, Gillebert TC et al (2009) Evaluation of left ventricular diastolic function by echocardiography: EAE/ASE Recommendations. Eur J Echocardiogr 10:165–193. https://doi.org/10.1093/ejechocard/jep007

    Article  PubMed  Google Scholar 

  22. Rudski LG, Lai WW, Afilalo J et al (2010) Echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography Endorsed by the European Association of Echocardiography and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713. https://doi.org/10.1016/j.echo.2010.05.010

    Article  PubMed  Google Scholar 

  23. Francia P, Balla C, Ricotta A et al (2011) Plasma osteopontin reveals left ventricular reverse remodelling following cardiac resynchronization therapy in heart failure. Int J Cardiol 153:306–310. https://doi.org/10.1016/j.ijcard.2010.08.048

    Article  PubMed  Google Scholar 

  24. Tang DW, Lin GS, Huang JL et al (2012) Changes of left ventricular myocardial collagen fibres and osteopontin expression in hypertrophic cardiomyopathy. Fa Yi Xue Za Zhi 28:247–251

    CAS  PubMed  Google Scholar 

  25. Arnlöv J, Evans JC, Benjamin EJ et al (2006) Clinical and echocardiographic correlates of plasma osteopontin in the community: the Framingham Heart Study. Heart 92:1514–1515. https://doi.org/10.1136/hrt.2005.081406

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dick SA, Epelman S (2016) Chronic heart failure and inflammation: what do we really know? Circ Res 119:159–176. https://doi.org/10.1161/CIRCRESAHA.116.308030

    Article  CAS  PubMed  Google Scholar 

  27. Anker SD, von Haehling S (2004) Inflammatory mediators in chronic heart failure: an overview. Heart 90:464–470. https://doi.org/10.1136/hrt.2002.007005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yndestad A, Damås JK, Oie E et al (2006) Systemic inflammation in heart failure – The whys and wherefores. Heart Fail Rev 11:83–92. https://doi.org/10.1007/s10741-006-9196-2

    Article  CAS  PubMed  Google Scholar 

  29. Anand IS, Latini R, Florea VG et al (2005) C‑reactive protein in heart failure. Prognostic value and the effect of valsartan. Circulation 112:1428–1434. https://doi.org/10.1161/CIRCULATIONAHA.104.508465

    Article  CAS  PubMed  Google Scholar 

  30. Szalay G, Sauter M, Haberland M et al (2009) Osteopontin: a fibrosis-related marker molecule in cardiac remodeling of enterovirus myocarditis in the susceptible host. Circ Res 104:851–859. https://doi.org/10.1161/CIRCRESAHA.109.193805

    Article  CAS  PubMed  Google Scholar 

  31. Renault MA, Robbesyn F, Réant P et al (2010) Osteopontin expression in cardiomyocytes induces dilated cardiomyopathy. Circ Heart Fail 3:431–439.  https://doi.org/10.1161/CIRCHEARTFAILURE.109.898114

    Article  CAS  PubMed  Google Scholar 

  32. Shin T, Ahn M, Kim H et al (2006) Increased expression of osteopontin in the heart tissue of Lewis rats with experimental autoimmune myocarditis. J Vet Med Sci 68:379–382

    Article  CAS  Google Scholar 

  33. Schoensiegel F, Bekeredjian R, Schrewe A et al (2007) Atrial natriuretic peptide and osteopontin are useful markers of cardiac disorders in mice. Comp Med 57:546–553

    CAS  PubMed  Google Scholar 

  34. Bujak M, Kweon HJ, Chatila K et al (2008) Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J Am Coll Cardiol 51:1384–1392. https://doi.org/10.1016/j.jacc.2008.01.011

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jugdutt BI, Palaniyappan A, Uwiera RR, Idikio H (2009) Role of healing-specific-matricellular proteins and matrix metalloproteinases in age-related enhanced early remodeling after reperfused STEMI in dogs. Mol Cell Biochem 322:25–36. https://doi.org/10.1007/s11010-008-9905-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Ms. Hana Řeháková of the Institute of Medical Biochemistry and Laboratory Diagnostics for technical assistance.

Funding

The study was supported by MH CZ DRO 64165 and Progres Q38/LF1 projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Palecek MD, PhD.

Ethics declarations

Conflict of interest

J. Podzimkova, T. Palecek, P. Kuchynka, J. Marek, B.A. Danek, M. Jachymova, M. Kalousova, T. Zima, and A. Linhart declare that they have no competing interests.

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975 (in its most recently amended version). Informed consent was obtained from all patients included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podzimkova, J., Palecek, T., Kuchynka, P. et al. Plasma osteopontin levels in patients with dilated and hypertrophic cardiomyopathy. Herz 44, 347–353 (2019). https://doi.org/10.1007/s00059-017-4645-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-017-4645-3

Keywords

Schlüsselwörter

Navigation