Skip to main content
Log in

Kardiogener Schock

Aktuelle Evidenz

Cardiogenic shock

Current evidence

  • CME
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

In diesem Beitrag werden die Pathophysiologie, die Inzidenz, das Überleben und die Behandlungsoptionen von Patienten mit kardiogenem Schock im Rahmen eines akuten Myokardinfarkts dargelegt. Die Schockspirale aus Blutdruckabfall in Folge von Linksherzversagen nach Herzinfarkt, konsekutiver Vasokonstriktion, paradoxer Vasodilatation beim SIRS („systemic inflammation response syndrome“) ist ein Circulus vitiosus, wenn er nicht unterbrochen wird. In der Therapie wird deshalb ein wesentliches Augenmerk auf die Evidenz in randomisierten Studien und die derzeitigen Leitlinienempfehlungen gelegt. Hier wird die Frage der „culprit lesion“ vs. „komplette Revaskularisation“ noch unterschiedlich bewertet. Bei der medikamentösen Therapie kommen neben Acetylsalicylsäure (ASS) und Heparin vermehrt Prasugrel oder Ticagrelor zum Einsatz. Bei den Inotropika bleibt Dobutamin erste Wahl, bei den Vasopressoren Noradrenalin. Der Kalzium-Sensitizer Levosimendan hat bei akuter Herzinsuffizienz die in ihn gesetzten Hoffnungen in randomisierten Studien nicht bestätigen können. Die Verwendung der intraaortalen Ballonpumpe (IABP) als mechanische Kreislaufunterstützung wurde auf eine Klasse-III-Empfehlung herabgestuft. Die Verwendung von perkutan implantierbaren mechanischen Kreislaufunterstützungssystemen zeigte wegen der erhöhten Blutungskomplikationen in den wenigen bisher durchgeführten randomisierten Studien keinen Überlebensvorteil, auch nicht im Vergleich zur IABP.

Abstract

This CME article addresses the pathophysiology, incidence, current survival outcome and treatment options for patients with cardiogenic shock as a complication of acute myocardial infarction. The shock spiral of left heart failure due to cardiac infarction, subsequent vasoconstriction and paradoxical vasodilation due to the systemic inflammation response syndrome (SIRS) is a vicious circle which must be interrupted. Treatment focuses on the evidence from randomized clinical trials and the current guideline recommendations. With respect to interventional and surgical treatment the question of culprit lesion vs. complete revascularization is still unsolved. For medicinal treatment acetylsalicylic acid (ASA) and heparin are more often supplemented with prasugrel and ticagrelor. In the case of inotropes, dobutamine remains the first-line treatment option and for vasopressors norepinephrine. The calcium sensitizer levosimendan has not provided the hoped for superiority over conventional treatment in randomized trials. The use of intra-aortic balloon pumps (IABP) is no longer recommended as circulatory support in acute heart failure (reduced to class III). The use of percutaneous implantable mechanical circulatory support devices has not shown a survival benefit in the few randomized trials carried out so far even when compared with IABP, due to increased bleeding complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Aissaoui N, Puymirat E, Juilliere Y et al (2016) Fifteen-year trends in the management of cardiogenic shock and associated 1‑year mortality in elderly patients with acute myocardial infarction: the FAST-MI programme. Eur J Heart Fail 18:1144–1152

    Article  CAS  PubMed  Google Scholar 

  2. Aissaoui N, Puymirat E, Tabone X et al (2012) Improved outcome of cardiogenic shock at the acute stage of myocardial infarction: a report from the USIK 1995, USIC 2000, and FAST-MI French Nationwide Registries. Eur Heart J 33:2535–2543

    Article  PubMed  Google Scholar 

  3. Goldberg RJ, Spencer FA, Gore JM et al (2009) Thirty-year trends (1975 to 2005) in the magnitude of, management of, and hospital death rates associated with cardiogenic shock in patients with acute myocardial infarction: a population-based perspective. Circulation 119:1211–1219

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jeger RV, Radovanovic D, Hunziker PR et al (2008) Ten-year incidence and treatment of cardiogenic shock. Ann Intern Med 149:618–626

    Article  PubMed  Google Scholar 

  5. Thiele H, Ohman EM, Desch S et al (2015) Management of cardiogenic shock. Eur Heart J 36:1223–1230

    Article  PubMed  Google Scholar 

  6. Thiele H, Schuler G (2009) Cardiogenic shock: to pump or not to pump? Eur Heart J 30:389–390

    Article  PubMed  Google Scholar 

  7. Zeymer U, Vogt A, Zahn R et al (2004) Predictors of in-hospital mortality in 1333 patients with acute myocardial infarction complicated by cardiogenic shock treated with primary percutaneous coronary intervention (PCI). Eur Heart J 25:322–328

    Article  PubMed  Google Scholar 

  8. Hochman JS, Sleeper LA, Webb JG et al (1999) Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK investigators. Should we emergently revascularize occluded coronaries for cardiogenic shock. N Engl J Med 341:625–634

    Article  CAS  PubMed  Google Scholar 

  9. Thiele H, Zeymer U, Neumann F‑J et al (2013) Intraaortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock. Final 12-month results of the randomised IntraAortic Balloon Pump in cardiogenic shock II (IABP-SHOCK II) Trial. Lancet 382:1638–1645

    Article  PubMed  Google Scholar 

  10. Thiele H, Zeymer U, Neumann F‑J et al (2012) Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med 367:1287–1296

    Article  CAS  PubMed  Google Scholar 

  11. Attana P, Lazzeri C, Chiostri M et al (2012) Lactate clearance in cardiogenic shock following ST elevation myocardial infarction: a pilot study. Acute Card Care 14:20–26

    Article  PubMed  Google Scholar 

  12. Singer M, Deutschman CS, Seymour CW et al (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315:801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37:2129–2200

    Article  PubMed  Google Scholar 

  14. Hochman JS, Buller CE, Sleeper LA et al (2000) Cardiogenic shock complicating acute myocardial infarction – etiologies, management and outcome: a report from the SHOCK Trial Registry. J Am Coll Cardiol 36:1063–1070

    Article  CAS  PubMed  Google Scholar 

  15. Thiele H, Allam B, Chatellier G et al (2010) Shock in acute myocardial infarction: the Cape Horn for trials? Eur Heart J 31:1828–1835

    Article  PubMed  Google Scholar 

  16. Steg PG, James SK, Atar D et al (2012) ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 33:2569–2619

    Article  CAS  PubMed  Google Scholar 

  17. Windecker S, Kolh P, Alfonso F et al (2014) 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 35:2541–2619

    Article  PubMed  Google Scholar 

  18. Hochman JS, Sleeper LA, Webb JG et al (2006) Early revascularization and long-term survival in cardiogenic shock complicating acute myocardial infarction. JAMA 295:2511–2515

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hochman JS, Sleeper LA, White HD et al (2001) One-year survival following early revascularization for cardiogenic shock. JAMA 285:190–192

    Article  CAS  PubMed  Google Scholar 

  20. Roffi M, Patrono C, Collet J‑P et al (2016) 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J 37:267–315

    Article  PubMed  Google Scholar 

  21. Awad HH, Anderson FA Jr, Gore JM et al (2012) Cardiogenic shock complicating acute coronary syndromes: Insights from the Global Registry of Acute Coronary Events. Am Heart J 163:963–971

    Article  PubMed  Google Scholar 

  22. Mehta RH, Grab JD, O’brien SM et al (2008) Clinical characteristics and in-hospital outcomes of patients with cardiogenic shock undergoing coronary artery bypass surgery. Circulation 117:876–885

    Article  PubMed  Google Scholar 

  23. De Waha S, Jobs A, Pöss J et al (2017) Multivessel versus culprit lesion only percutaneous coronary intervention in cardiogenic shock complicating acute myocardial infarction: a systematic review and meta-analysis. Eur Heart J. https://doi.org/10.1177/2048872617719640

    Google Scholar 

  24. Thiele H, Desch S, Piek JJ et al (2016) Multivessel versus culprit lesion only percutaneous revascularization plus potential staged revascularization in patients with acute myocardial infarction complicated by cardiogenic shock: design and rationale of CULPRIT-SHOCK trial. Am Heart J 172:160–169

    Article  PubMed  Google Scholar 

  25. Valgimigli M, Gagnor A, Calabro P et al (2015) Radial versus femoral access in patients with acute coronary syndromes undergoing invasive management: a randomised multicentre trial. Lancet 385:2465–2476

    Article  PubMed  Google Scholar 

  26. Jolly SS, Yusuf S, Cairns J et al (2011) Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet 377:1409–1420

    Article  PubMed  Google Scholar 

  27. Romagnoli E, Biondi-Zoccai G, Sciahbasi A et al (2012) Radial versus femoral randomized investigation in ST-segment elevation acute coronary syndrome: the RIFLE-STEACS (Radial Versus Femoral Randomized Investigation in ST-Elevation Acute Coronary Syndrome) study. J Am Coll Cardiol 60:2481–2489

    Article  PubMed  Google Scholar 

  28. Pancholy SB, Joshi P, Shah S et al (2015) Effect of vascular access site choice on radiation exposure during coronary angiography: the REVERE trial (randomized evaluation of vascular entry site and radiation exposure). JACC Cardiovasc Interv 8:1189–1196

    Article  PubMed  Google Scholar 

  29. Orban M, Limbourg T, Neumann F‑J et al (2016) ADP receptor antagonists in patients with acute myocardial infarction complicated by cardiogenic shock: a post hoc IABP-SHOCK II trial subgroup analysis. EuroIntervention 12:e1395–e1403

    Article  PubMed  Google Scholar 

  30. Tousek P, Rokyta R, Tesarova J et al (2011) Routine upfront abciximab versus standard periprocedural therapy in patients undergoing primary percutaneous coronary intervention for cardiogenic shock: The PRAGUE-7 Study. An open randomized multicentre study. Acute Card Care 13:116–122

    Article  PubMed  Google Scholar 

  31. Werdan K, Ruß M, Buerke M et al (2012) Cardiogenic shock due to myocardial infarction: diagnosis, monitoring and treatment – a German-Austrian S3 Guideline. Dtsch Arztebl Int 109:343–351

    PubMed  PubMed Central  Google Scholar 

  32. De Backer D, Biston P, Devriendt J et al (2010) Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 362:779–789

    Article  PubMed  Google Scholar 

  33. Levy B, Perez P, Perny J et al (2011) Comparison of norepinephrine-dobutamine to epinephrine for hemodynamics, lactate metabolism, and organ function variables in cardiogenic shock. A prospective, randomized pilot study. Crit Care Med 39:450–455

    Article  CAS  PubMed  Google Scholar 

  34. Mebazaa A, Nieminen MS, Packer M et al (2007) Levosimendan vs dobutamine for patients with acute decompensated heart failure. The SURVIVE Randomized Trial. JAMA 297:1883–1891

    Article  CAS  PubMed  Google Scholar 

  35. Gordon AC, Perkins GD, Singer M et al (2016) Levosimendan for the prevention of acute organ dysfunction in sepsis. N Engl J Med 375:1638–1648

    Article  CAS  PubMed  Google Scholar 

  36. Landoni G, Lomivorotov VV, Alvaro G et al (2017) Levosimendan for hemodynamic support after cardiac surgery. N Engl J Med 376:2021–2031

    Article  CAS  PubMed  Google Scholar 

  37. Mehta RH, Leimberger JD, Van Diepen S et al (2017) Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery. N Engl J Med 376:2032–2042

    Article  CAS  PubMed  Google Scholar 

  38. Kantrowitz A, Tjonneland S, Freed PS et al (1968) Initial clinical experience with intraaortic balloon pumping in cardiogenic shock. JAMA 203:113–118

    Article  CAS  PubMed  Google Scholar 

  39. Sjauw KD, Engstrom AE, Vis MM et al (2009) A systematic review and meta-analysis of intra aortic balloon pump therapy in ST-elevation myocardial infarction: should we change the guidelines? Eur Heart J 30:459–468

    Article  PubMed  Google Scholar 

  40. Burkhoff D, Cohen H, Brunckhorst C et al (2006) A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J 152:469.e461–469.e468

    Article  Google Scholar 

  41. Ouweneel DM, Eriksen E, Sjauw KD et al (2017) Impella CP versus intra-aortic balloon pump support in acute myocardial infarction complicated by cardiogenic shock. The IMPRESS in Severe Shock trial. J Am Coll Cardiol 69:278–287

    Article  PubMed  Google Scholar 

  42. Seyfarth M, Sibbing D, Bauer I et al (2008) A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol 52:1584–1588

    Article  PubMed  Google Scholar 

  43. Thiele H, Sick P, Boudriot E et al (2005) Randomized comparison of intraaortic balloon support versus a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J 26:1276–1283

    Article  PubMed  Google Scholar 

  44. Thiele H, Jobs A, Ouweneel DM et al (2017) Percutaneous short-term active mechanical support devices in cardiogenic shock: a systematic review and collaborative meta-analysis of randomized trials. Eur Heart J. https://doi.org/10.1093/eurheartj/ehx1363

    Google Scholar 

  45. Poess J, Köster J, Fuernau G et al (2017) Risk stratification for patients in cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol 69:1913–1920

    Article  Google Scholar 

  46. Ouweneel DM, Schotborgh JV, Limpens J et al (2016) Extracorporeal life support during cardiac arrest and cardiogenic shock: a systematic review and meta-analysis. Intensive Care Med 42:1922–1934

    Article  PubMed  PubMed Central  Google Scholar 

  47. Beurtheret S, Mordant P, Paoletti X et al (2013) Emergency circulatory support in refractory cardiogenic shock patients in remote institutions: a pilot study (the cardiac-RESCUE program). Eur Heart J 34:112–120

    Article  PubMed  Google Scholar 

  48. De Waha S, Fuernau G, Desch S et al (2016) Long-term prognosis after extracorporeal life support in refractory cardiogenic shock: results from a real-world cohort. EuroIntervention 11:1363–1371

    Article  PubMed  Google Scholar 

  49. De Waha S, Graf T, Desch S et al (2017) Outcome of elderly undergoing extracorporeal life support in refractory cardiogenic shock. Clin Res Cardiol 106:379–385

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Thiele.

Ethics declarations

Interessenkonflikt

H. Thiele gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

CME-Fragebogen

CME-Fragebogen

Bei der Pathophysiologie im kardiogenen Schock spielt welcher der folgenden Faktoren keine wesentliche Rolle?

Diastolische Dysfunktion

Systolische Dysfunktion

Euler-Liljestrand-Mechanismus

Inflammation

Vasodilatation

Bevorzugter Zugangsweg bei der PCI auch im kardiogenen Schock bei geübten Untersuchern ist …

A. brachialis.

A. femoralis.

A. ulnaris.

Zugangsweg nach Sones.

A. radialis.

Bevorzugter Vasokonstriktor im kardiogenen Schock nach den Leitlinien ist …

Adrenalin.

Dopamin.

Theodrenalin.

Noradrenalin.

Vasopressin.

Wodurch ist die Wirkung von Antiplättchensubstanzen im kardiogenen Schock nicht beeinträchtigt?

Hypothermie

UV-Licht

Opiatgabe

Reduzierter Kreislauf

Reduzierte Stoffwechselfunktion

Nach aktuellen Registerdaten liegt die Mortalität im kardiogenen Schock als Folge eines Myokardinfarkts zwischen …

70 und 80 %

60 und 70 %

50 und 60 %

40 und 50 %

30 und 40 %

Was ist keine typische Ursache eines kardiogenen Schocks nach Myokardinfarkt?

Mitralklappeninsuffizienz

Ventrikelseptumdefekt

Linksherzversagen

Rechtsherzversagen

Vorhofthrombus

Was ist die häufigste Ursache für einen kardiogenen Schock nach Myokardinfarkt?

Ventrikelseptumdefekt

Ventrikelruptur

Mitralinsuffizienz

Rechtsherzversagen

Linksherzversagen

Wie hoch ist die Inzidenz einer Mehrgefäß-KHK bei kardiogenem Schock mit Myokardinfarkt?

70–80 %

60–70 %

50–60 %

40–50 %

30–40 %

Was ist kein typisches Kriterium für die Definition eines kardiogenen Schocks?

Systolischer Blutdruck < 90 mm Hg

Laktat > 2 mmol/l

Lungenödem

Oligurie

Bradykardie

Nach einer aktuellen Metaanalyse lässt sich welcher der folgenden Parameter durch mechanische Kreislaufunterstützungssysteme positiv beeinflussen?

Arterielles Laktat

PCWP

„Cardiac index“

Mortalität

Mikrozirkulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiele, H. Kardiogener Schock. Herz 42, 795–806 (2017). https://doi.org/10.1007/s00059-017-4619-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-017-4619-5

Schlüsselwörter

Keywords

Navigation