Skip to main content
Log in

Operator radiation exposure during transradial coronary angiography

Effect of single vs. double catheters

Strahlenexposition des Untersuchers bei transradialer Koronarangiographie

Einfluss von Einzel- vs. Doppelkatheter

  • Original articles
  • Published:
Herz Aims and scope Submit manuscript



The right radial artery has gained popularity as the preferred access site for coronary angiography. To save time and limit the radiation exposure of operators and patients, newly designed catheters can be used to access both the right and left coronary arteries. The aim of this study was to compare operator radiation exposure between single-catheter (SCA) and two-catheter approaches (TCA).


In all, 256 patients undergoing diagnostic coronary angiography via the right radial artery in a high-volume medical center were randomized to either the SCA or TCA group. The dose of radiation exposure of the operators was measured by an electronic dosimeter attached to the breast pocket of the operator’s apron. The dose–area product and air kerma were used as indices of patient exposure to radiation. The duration of fluoroscopy “beam-on” time, acquisition time, and total duration of the procedure were measured and analyzed for the two groups.


Operator radiation exposure was 21.6 ± 11.4 µSv in the SCA group, which was significantly less than 28.0 ± 14.9 µSv in the TCA group. The duration of fluoroscopy was significantly shorter in the SCA group than in the TCA group (152 ± 83 vs. 203 ± 121 s; p < 0.001). Moreover, the total duration of the diagnostic procedure was also shorter in the SCA group compared with the TCA group (9.5 ± 3.2 vs. 11.4 ± 4.0 min; p < 0.001).


The use of SCA is advantageous over TCA in reducing the exposure of operators to radiation. The shorter duration of fluoroscopy beam-on time and total procedure time may contribute to the lower exposure of operators to radiation.



Die rechte A. radialis wird zunehmend als bevorzugte Zugangsstelle für die Koronarangiographie verwendet. Um Zeit zu sparen und die Strahlenexposition von Untersuchern und Patienten zu begrenzen, können neu entwickelte Katheter für den Zugang sowohl zur rechten als auch zur linken Koronararterie eingesetzt werden. Ziel der vorliegenden Studie war es, die Strahlenexposition des Untersuchers zwischen Einzelkatheter- und Doppelkathetereinsatz zu vergleichen.


Insgesamt wurden 256 Patienten, bei denen eine diagnostische Koronarangiographie über die rechte A. radialis in einem medizinischen Zentrum mit hohem Durchsatz erfolgte, randomisiert entweder der Einzel- oder der Doppelkathetergruppe zugeteilt. Mit einem elektronischen Dosimeter, das an der Brusttasche der Untersucherschürze befestigt war, wurde die Dosis der Strahlenexposition des Untersuchers gemessen. Das Dosis-Flächen-Produkt und die Luftkerma wurden als Indizes der Strahlenexposition des Patienten verwendet. Für beide Gruppen wurden die Dauer der Durchleuchtungszeit mit eingeschaltetem Röntgenstrahl, die Aufnahmedauer und die Gesamtdauer der Untersuchung erfasst und ausgewertet.


Die Strahlenbelastung des Untersuchers betrug in der Einzelkathetergruppe 21,6 ± 11,4 µSv und war somit signifikant geringer als der Wert von 28,0 ± 14,9 µSv in der Doppelkathetergruppe. Auch war die Durchleuchtungsdauer in der Einzelkathetergruppe signifikant kürzer als in der Doppelkathetergruppe (152 ± 83 vs. 203 ± 121 s; p < 0,001). Außerdem war auch die Gesamtdauer der Untersuchung in der Einzelkathetergruppe kürzer als in der Doppelkathetergruppe (9,5 ± 3,2 vs. 11,4 ± 4,0 min; p < 0,001).


Die Verwendung von Einzelkathetern ist gegenüber dem Einsatz von Doppelkathetern vorteilhaft, da so die Strahlenexposition des Untersuchers verringert ist. Zur geringeren Strahlenexposition der Untersucher tragen möglicherweise auch die kürzere Dauer der Durchleuchtungszeit mit eingeschaltetem Röntgenstrahl und der Gesamtuntersuchungszeit bei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others


  1. Plourde G, Pancholy SB, Nolan J, Jolly S, Rao SV, Amhed I, Bangalore S, Patel T, Dahm JB, Bertrand OF (2015) Radiation exposure in relation to the arterial access site used for diagnostic coronary angiography and percutaneous coronary intervention: a systematic review and meta-analysis. Lancet 386(10009):2192–2203. doi:10.1016/S0140-6736(15)00305-0

    Article  PubMed  Google Scholar 

  2. Park EY, Shroff AR, Crisco LV, Vidovich MI (2013) A review of radiation exposures associated with radial cardiac catheterisation. EuroIntervention 9(6):745–753. doi:10.4244/EIJV9I6A119

    Article  PubMed  Google Scholar 

  3. Rao SV, Bernat I, Bertrand OF (2012) Clinical update: Remaining challenges and opportunities for improvement in percutaneous transradial coronary procedures. Eur Heart J 33(20):2521–2526. doi:10.1093/eurheartj/ehs169

    Article  PubMed  Google Scholar 

  4. Marque N, Jegou A, Varenne O, Salengro E, Allouch P, Margot O, Spaulding C (2009) Impact of an extension tube on operator radiation exposure during coronary procedures performed through the radial approach. Arch Cardiovasc Dis 102(11):749–754. doi:10.1016/j.acvd.2009.09.006

    Article  PubMed  Google Scholar 

  5. Politi L, Biondi-Zoccai G, Nocetti L, Costi T, Monopoli D, Rossi R, Sgura F, Modena MG, Sangiorgi GM (2012) Reduction of scatter radiation during transradial percutaneous coronary angiography: a randomized trial using a lead-free radiation shield. Catheter Cardiovasc Interv 79(1):97–102. doi:10.1002/ccd.22947

    Article  PubMed  Google Scholar 

  6. Behan M, Haworth P, Colley P, Brittain M, Hince A, Clarke M, Ghuran A, Saha M, Hildick-Smith D (2010) Decreasing operators’ radiation exposure during coronary procedures: the transradial radiation protection board. Catheter Cardiovasc Interv 76(1):79–84. doi:10.1002/ccd.22466

    Article  PubMed  Google Scholar 

  7. Iqtidar AF, Jeon C, Rothman R, Snead R, Pyne CT (2013) Reduction in operator radiation exposure during transradial catheterization and intervention using a simple lead drape. Am Heart J 165(3):293–298. doi:10.1016/j.ahj.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  8. Musallam A, Volis I, Dadaev S, Abergel E, Soni A, Yalonetsky S, Kerner A, Roguin A (2015) A randomized study comparing the use of a pelvic lead shield during trans-radial interventions: Threefold decrease in radiation to the operator but double exposure to the patient. Catheter Cardiovasc Interv 85(7):1164–1170. doi:10.1002/ccd.25777

    Article  PubMed  Google Scholar 

  9. Ikari Y, Nagaoka M, Kim JY, Morino Y, Tanabe T (2005) The physics of guiding catheters for the left coronary artery in transfemoral and transradial interventions. J Invasive Cardiol 17(12):636–641

    PubMed  Google Scholar 

  10. Ootomo T, Meguro T, Endoh N, Terashima M, Ito Y, Abe S, Ogata K, Fujiwara S, Honda H, Kuhara R, Miyazaki Y, Kawashima O, Isoyama S (2002) A new miniature catheter with side-holes for percutaneous transradial or transbrachial coronary angiography. J Invasive Cardiol 14(7):379–384

    PubMed  Google Scholar 

  11. Kim KP, Miller DL, Balter S, Kleinerman RA, Linet MS, Kwon D, Simon SL (2008) Occupational radiation doses to operators performing cardiac catheterization procedures. Health Phys 94(3):211–227. doi:10.1097/01.HP.0000290614.76386.35

    Article  CAS  PubMed  Google Scholar 

  12. Lange HW, von Boetticher H (2006) Randomized comparison of operator radiation exposure during coronary angiography and intervention by radial or femoral approach. Catheter Cardiovasc Interv 67(1):12–16. doi:10.1002/ccd.20451

    Article  PubMed  Google Scholar 

  13. Brown KR, Rzucidlo E (2011) Acute and chronic radiation injury. J Vasc Surg 53(1 Suppl):15S–21S. doi:10.1016/j.jvs.2010.06.175

    Article  PubMed  Google Scholar 

  14. Mehta SR, Jolly SS, Cairns J, Niemela K, Rao SV, Cheema AN, Steg PG, Cantor WJ, Dzavik V, Budaj A, Rokoss M, Valentin V, Gao P, Yusuf S, RIVAL Investigators (2012) Effects of radial versus femoral artery access in patients with acute coronary syndromes with or without ST-segment elevation. J Am Coll Cardiol 60(24):2490–2499. doi:10.1016/j.jacc.2012.07.050

    Article  PubMed  Google Scholar 

  15. Romagnoli E, Biondi-Zoccai G, Sciahbasi A, Politi L, Rigattieri S, Pendenza G, Summaria F, Patrizi R, Borghi A, Di Russo C, Moretti C, Agostoni P, Loschiavo P, Lioy E, Sheiban I, Sangiorgi G (2012) Radial versus femoral randomized investigation in ST-segment elevation acute coronary syndrome: the RIFLE-STEACS (Radial Versus Femoral Randomized Investigation in ST-Elevation Acute Coronary Syndrome) study. J Am Coll Cardiol 60(24):2481–2489. doi:10.1016/j.jacc.2012.06.017

    Article  PubMed  Google Scholar 

  16. Chen O, Goel S, Acholonu M, Kulbak G, Verma S, Travlos E, Casazza R, Borgen E, Malik B, Friedman M, Moskovits N, Frankel R, Shani J, Ayzenberg S (2016) Comparison of standard catheters versus radial artery-specific catheter in patients who underwent coronary Angiography through Transradial access. Am J Cardiol 118(3):357–361. doi:10.1016/j.amjcard.2016.05.010

    Article  PubMed  Google Scholar 

  17. Kim SM, Kim DK, Kim DI, Kim DS, Joo SJ, Lee JW (2006) Novel diagnostic catheter specifically designed for both coronary arteries via the right transradial approach. A prospective, randomized trial of Tiger II vs. Judkins catheters. Int J Cardiovasc Imaging 22(3-4):295–303. doi:10.1007/s10554-005-9029-8

    Article  PubMed  Google Scholar 

  18. De Rosa S, Torella D, Caiazzo G, Giampa S, Indolfi C (2014) Left radial access for percutaneous coronary procedures: from neglected to performer? A meta-analysis of 14 studies including 7,603 procedures. Int J Cardiol 171(1):66–72. doi:10.1016/j.ijcard.2013.11.046

    Article  PubMed  Google Scholar 

  19. Dominici M, Diletti R, Milici C, Bock C, Placanica A, D’Alessandro G, Arrivi A, Italiani M, Buono E, Boschetti E (2013) Operator exposure to x‑ray in left and right radial access during percutaneous coronary procedures: OPERA randomised study. Heart 99(7):480–484. doi:10.1136/heartjnl-2012-302895

    Article  CAS  PubMed  Google Scholar 

  20. Rigattieri S, Di Russo C, Cera M, Fedele S, Sciahbasi A, Pugliese FR (2015) Patient radiation exposure in right versus left trans-radial approach for coronary procedures. Cardiovasc Revasc Med 16(1):15–19. doi:10.1016/j.carrev.2014.12.008

    Article  PubMed  Google Scholar 

  21. Sciahbasi A, Romagnoli E, Burzotta F, Trani C, Sarandrea A, Summaria F, Pendenza G, Tommasino A, Patrizi R, Mazzari M, Mongiardo R, Lioy E (2011) Transradial approach (left vs right) and procedural times during percutaneous coronary procedures: TALENT study. Am Heart J 161(1):172–179. doi:10.1016/j.ahj.2010.10.003

    Article  PubMed  Google Scholar 

  22. Sciahbasi A, Romagnoli E, Trani C, Burzotta F, Sarandrea A, Summaria F, Patrizi R, Rao S, Lioy E (2011) Operator radiation exposure during percutaneous coronary procedures through the left or right radial approach: the TALENT dosimetric substudy. Circ Cardiovasc Interv 4(3):226–231. doi:10.1161/CIRCINTERVENTIONS.111.961185

    Article  PubMed  Google Scholar 

  23. Liu H, Jin Z, Jing L (2014) Comparison of radiation dose to operator between transradial and transfemoral coronary angiography with optimised radiation protection: a phantom study. Radiat Prot Dosimetry 158(4):412–420. doi:10.1093/rpd/nct261

    Article  PubMed  Google Scholar 

  24. Lange HW, von Boetticher H (2012) Reduction of operator radiation dose by a pelvic lead shield during cardiac catheterization by radial access: comparison with femoral access. JACC Cardiovasc Interv 5(4):445–449. doi:10.1016/j.jcin.2011.12.013

    Article  PubMed  Google Scholar 

  25. Bertrand OF, Rao SV, Pancholy S, Jolly SS, Rodes-Cabau J, Larose E, Costerousse O, Hamon M, Mann T (2010) Transradial approach for coronary angiography and interventions: results of the first international transradial practice survey. JACC Cardiovasc Interv 3(10):1022–1031. doi:10.1016/j.jcin.2010.07.013

    Article  PubMed  Google Scholar 

  26. Youssef AA, Hsieh YK, Cheng CI, Wu CJ (2008) A single transradial guiding catheter for right and left coronary angiography and intervention. EuroIntervention 3(4):475–481

    Article  Google Scholar 

  27. Varghese A, Livingstone RS, Varghese L, Kumar P, Srinath SC, George OK, George PV (2016) Radiation doses and estimated risk from angiographic projections during coronary angiography performed using novel flat detector. J Appl Clin Med Phys 17(3):5926

    Article  Google Scholar 

  28. Mercuri M, Mehta S, Xie C, Valettas N, Velianou JL, Natarajan MK (2011) Radial artery access as a predictor of increased radiation exposure during a diagnostic cardiac catheterization procedure. JACC Cardiovasc Interv 4(3):347–352. doi:10.1016/j.jcin.2010.11.011

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to N. D. Nader MD, PhD, FACC, FCCP.

Ethics declarations

Conflict of interest

A. Tarighatnia, L. Pourafkari, A. Farajollahi, A.H. Mohammadalian, M. Ghojazadeh, and N.D. Nader declare that they have no competing interests.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarighatnia, A., Pourafkari, L., Farajollahi, A. et al. Operator radiation exposure during transradial coronary angiography. Herz 43, 535–542 (2018).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: