Advertisement

Herz

, Volume 42, Issue 3, pp 262–270 | Cite as

Aktuelle Empfehlungen für die echokardiographische Diagnostik bei Tumorpatienten

Kommt die Echokardiographie zu spät oder zu früh?
  • I. Kruck
Schwerpunkt
  • 180 Downloads

Zusammenfassung

Eine kardiale Dysfunktion durch kardiotoxische Therapie kann jederzeit während und auch nach Beendigung der Therapie sogar noch nach Jahren auftreten. Für die Beurteilung der systolischen linksventrikulären (LV-) Funktion ist die Bestimmung der Ejektionsfraktion (EF) insbesondere mit 3‑D-Technologie zur Erfassung der CTRCD („cancer therapy-related cardiac dysfunction“) als Basiswert etabliert. Es konnte aber gezeigt werden, dass die zusätzliche Analyse der LV-Funktion mittels Deformationsanalyse die sensitivere Methode für die Erfassung einer subklinischen systolischen LV-Dysfunktion ist. Diastolische Funktionsparameter werden weder für die frühzeitige Erfassung noch für Verlaufsuntersuchungen empfohlen. Die Entscheidung zur Modifikation eines onkologischen Therapieschemas und/oder zur Einleitung einer spezifisch kardialen Therapie ist aufgrund der vorliegenden Daten bezüglich Lebensqualität und Prognose sinnvoll, sollte aber derzeit – einzelfallbasiert – von einem erfahrenen kardioonkologischen Expertenteam getroffen werden. Es besteht weitgehend Konsens, dass dieses Patientenkollektiv in einem Echokardiographielabor untersucht wird, das über eine entsprechende apparative Ausstattung und Untersucherexpertise verfügt. Insgesamt sind bisher aber nur wenig Endpunktdaten verfügbar, sodass keine abschließende Beantwortung der Fragestellung möglich ist. Angaben zur Häufigkeit und zu geforderten Echokardiographieparametern für echokardiographische Nachkontrollen variieren in den Empfehlungen der Fachgesellschaften. Trotz der mittlerweile bekannt erhöhten Morbidität und Mortalität durch kardiotoxische Therapie werden längst nicht alle Patienten, die mit einer potenziell kardiotoxischen Therapie behandelt werden, auf das Vorliegen einer Herzinsuffizienz untersucht.

Schlüsselwörter

Echokardiographie Screening Kardiotoxizität Kardiomyopathien Krebs 

Abkürzungen

ASCO

American Society of Clinical Oncology

BNP

„Brain-natriuretic peptide“

CTRCD

„Cancer therapy-related cardiac dysfunction“

ESMO

European Society of Medical Oncology

GLS

Globaler longitudinaler peak-systolischer Strain

GCS

Globaler zirkumferenzieller Strain

LVEF

Linksventrikuläre Ejektionsfraktion

RT

Mediastinale Radiotherapie

Current recommendations for diagnostic echocardiography in cancer patients

Is echocardiography too late or too early?

Abstract

Cardiac dysfunction caused by cardiotoxic treatment can appear at any time during or after therapy and sometimes even after years. To evaluate systolic left ventricular (LV) function assessment of the ejection fraction (EF), especially using 3D technology, is the established base value for cancer therapy-related cardiac dysfunction (CTRCD). It has been found that additional analysis of the LV function using deformation imaging is a more accurate and sensitive tool for detecting subclinical systolic LV dysfunction. Diastolic function parameters are not recommended for screening. The decision to modify oncological treatment and/or to begin specific cardiac treatment after detecting LV dysfunction is based on known data taking both the prognosis and quality of life into consideration and performed in individual cases by a cardio-oncological team of experts. There is a widely held consensus that these patients should be examined in an echocardiographic laboratory which has the appropriate equipment and diagnostic expertise. The lack of multicenter studies and the paucity of outcome data do not yet answer the question if echocardiography is carried out too early or too late. Recommendations on the frequency of standardized follow-up examinations and standardized echocardiographic parameter vary between the specialist societies. Although increased morbidity and mortality due to cardiotoxic treatment are now well known facts, too few patients undergo appropriate examinations.

Keywords

Echocardiography Screening Cardiotoxicity Cardiomyopathies Neoplasms 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

I. Kruck gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Armenian SH, Lacchetti C, Lenihan D (2016) Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American society of clinical oncology clinical practice guideline summary. J Oncol Pract doi: 10.1200/JOP.2016.018770
  2. 2.
    Armstrong GT, Joshi VM, Ness KK et al (2015) Comprehensive echocardiographic detection of treatment-related cardiac dysfunction in adult survivors of childhood cancer: results from the st. Jude lifetime cohort study. J Am Coll Cardiol 65:2511–2522CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cardinale D, Colombo A, Bacchiani G et al (2015) Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 131:1981–1988CrossRefPubMedGoogle Scholar
  4. 4.
    Cheng S, Larson MG, Mccabe EL et al (2013) Reproducibility of speckle-tracking-based strain measures of left ventricular function in a community-based study. J Am Soc Echocardiogr 26:1258–1266 e1252CrossRefPubMedGoogle Scholar
  5. 5.
    Collier P, Koneru S, Tamarappoo B et al (2015) Strain imaging to detect cancer therapeutics-related cardiac dysfunction: are we there yet? Future Cardiol 11:401–405CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Curigliano G, Cardinale D, Suter T et al (2012) Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol 23(Suppl 7):vii155–vii166CrossRefPubMedGoogle Scholar
  7. 7.
    Dorup I, Levitt G, Sullivan I et al (2004) Prospective longitudinal assessment of late anthracycline cardiotoxicity after childhood cancer: the role of diastolic function. Heart 90:1214–1216CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Drafts BC, Twomley KM, D’agostino R Jr. et al (2013) Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging 6:877–885CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Eschenhagen T, Force T, Ewer MS et al (2011) Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 13:1–10CrossRefPubMedGoogle Scholar
  10. 10.
    Ewer MS, Vooletich MT, Durand JB et al (2005) Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol 23:7820–7826CrossRefPubMedGoogle Scholar
  11. 11.
    Fallah-Rad N, Walker JR, Wassef A et al (2011) The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol 57:2263–2270CrossRefPubMedGoogle Scholar
  12. 12.
    Felker GM, Thompson RE, Hare JM et al (2000) Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med 342:1077–1084CrossRefPubMedGoogle Scholar
  13. 13.
    Herrmann J, Lerman A, Sandhu NP et al (2014) Evaluation and management of patients with heart disease and cancer: cardio-oncology. Mayo Clin Proc 89:1287–1306CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hoffmann R, Von Bardeleben S, Kasprzak JD et al (2006) Analysis of regional left ventricular function by cineventriculography, cardiac magnetic resonance imaging, and unenhanced and contrast-enhanced echocardiography: a multicenter comparison of methods. J Am Coll Cardiol 47:121–128CrossRefPubMedGoogle Scholar
  15. 15.
    Hull MC, Morris CG, Pepine CJ et al (2003) Valvular dysfunction and carotid, subclavian, and coronary artery disease in survivors of hodgkin lymphoma treated with radiation therapy. JAMA 290:2831–2837CrossRefPubMedGoogle Scholar
  16. 16.
    Jawa Z, Perez RM, Garlie L et al (2016) Risk factors of trastuzumab-induced cardiotoxicity in breast cancer: a meta-analysis. Medicine (Baltimore) 95:e5195CrossRefGoogle Scholar
  17. 17.
    Jones LW, Haykowsky MJ, Swartz JJ et al (2007) Early breast cancer therapy and cardiovascular injury. J Am Coll Cardiol 50:1435–1441CrossRefPubMedGoogle Scholar
  18. 18.
    Kongbundansuk S, Hundley WG (2014) Noninvasive imaging of cardiovascular injury related to the treatment of cancer. JACC Cardiovasc Imaging 7:824–838CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lancellotti P, Nkomo VT, Badano LP et al (2013) Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr 26:1013–1032CrossRefPubMedGoogle Scholar
  20. 20.
    Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16:233–270CrossRefPubMedGoogle Scholar
  21. 21.
    Marwick TH, Leano RL, Brown J et al (2009) Myocardial strain measurement with 2‑dimensional speckle-tracking echocardiography: definition of normal range. JACC Cardiovasc Imaging 2:80–84CrossRefPubMedGoogle Scholar
  22. 22.
    Mor-Avi V, Lang RM (2013) Is echocardiography reliable for monitoring the adverse cardiac effects of chemotherapy? J Am Coll Cardiol 61:85–87CrossRefPubMedGoogle Scholar
  23. 23.
    Mor-Avi V, Lang RM, Badano LP et al (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr 24:277–313CrossRefPubMedGoogle Scholar
  24. 24.
    Mulrooney DA, Armstrong GT, Huang S et al (2016) Cardiac outcomes in adult survivors of childhood cancer exposed to cardiotoxic therapy: a cross-sectional study. Ann Intern Med 164:93–101CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Negishi K, Negishi T, Hare JL et al (2013) Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J Am Soc Echocardiogr 26:493–498CrossRefPubMedGoogle Scholar
  26. 26.
    Nolan MT, Plana JC, Thavendiranathan P et al (2016) Cost-effectiveness of strain-targeted cardioprotection for prevention of chemotherapy-induced cardiotoxicity. Int J Cardiol 212:336–345CrossRefPubMedGoogle Scholar
  27. 27.
    Oreto L, Todaro MC, Umland MM et al (2012) Use of echocardiography to evaluate the cardiac effects of therapies used in cancer treatment: what do we know? J Am Soc Echocardiogr 25:1141–1152CrossRefPubMedGoogle Scholar
  28. 28.
    Otterstad JE (2002) Measuring left ventricular volume and ejection fraction with the biplane Simpson’s method. Heart 88:559–560CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pinder MC, Duan Z, Goodwin JS et al (2007) Congestive heart failure in older women treated with adjuvant anthracycline chemotherapy for breast cancer. J Clin Oncol 25:3808–3815CrossRefPubMedGoogle Scholar
  30. 30.
    Plana JC, Galderisi M, Barac A et al (2014) Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 27:911–939CrossRefPubMedGoogle Scholar
  31. 31.
    Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37:2129–2200CrossRefPubMedGoogle Scholar
  32. 32.
    Prosnitz RG, Hubbs JL, Evans ES et al (2007) Prospective assessment of radiotherapy-associated cardiac toxicity in breast cancer patients: analysis of data 3 to 6 years after treatment. Cancer 110:1840–1850CrossRefPubMedGoogle Scholar
  33. 33.
    Rhea IB, Uppuluri S, Sawada S et al (2015) Incremental prognostic value of echocardiographic strain and its association with mortality in cancer patients. J Am Soc Echocardiogr 28:667–673CrossRefPubMedGoogle Scholar
  34. 34.
    Sawaya H, Sebag IA, Plana JC et al (2012) Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging 5:596–603CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Suter TM, Ewer MS (2013) Cancer drugs and the heart: importance and management. Eur Heart J 34:1102–1111CrossRefPubMedGoogle Scholar
  36. 36.
    Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97:2869–2879CrossRefPubMedGoogle Scholar
  37. 37.
    Task Force M, Montalescot G, Sechtem U et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34:2949–3003CrossRefGoogle Scholar
  38. 38.
    Tassan-Mangina S, Codorean D, Metivier M et al (2006) Tissue doppler imaging and conventional echocardiography after anthracycline treatment in adults: early and late alterations of left ventricular function during a prospective study. Eur J Echocardiogr 7:141–146CrossRefPubMedGoogle Scholar
  39. 39.
    Thavendiranathan P, Grant AD, Negishi T et al (2013) Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol 61:77–84CrossRefPubMedGoogle Scholar
  40. 40.
    Thavendiranathan P, Poulin F, Lim KD et al (2014) Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol 63:2751–2768CrossRefPubMedGoogle Scholar
  41. 41.
    Voigt JU, Pedrizzetti G, Lysyansky P et al (2015) Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J Am Soc Echocardiogr 28:183–193CrossRefPubMedGoogle Scholar
  42. 42.
    Zamorano JL, Lancellotti P, Rodriguez Munoz D et al (2016) 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J 37:2768–2801CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag Berlin 2017

Authors and Affiliations

  1. 1.Cardio Centrum Ludwigsburg BietigheimLudwigsburgDeutschland

Personalised recommendations