Advertisement

Herz

, Volume 42, Issue 3, pp 241–254 | Cite as

Echtzeit-3-D-Echokardiographie zur Schweregradbeurteilung von Herzklappenvitien

Einfluss auf aktuelle Leitlinien
Schwerpunkt
  • 283 Downloads

Zusammenfassung

Neben der räumlich-anatomischen Darstellung von Herzklappen verspricht die Echtzeit-3-D-Echokardiographie mit Hilfe des Farbdopplers eine genauere Klappenflussquantifizierung als herkömmliche 2‑D-Methoden. Insbesondere wurde die Quantifizierung des Regurgitationsflusses bei Mitralklappeninsuffizienz mittels der PISA („proximal isovelocity surface area“)-Methode und der VCA („vena contracta area“)-Methode in verschiedenen Studien validiert. Speziell die Beurteilung der VCA mittels Farbdoppler-Echtzeit-3-D-Echokardiographie (FD-3DE) führte zu einem Paradigmenwechsel im Verständnis der VCA, da sich die VCA in der Mehrzahl der Fälle als stark asymmetrisch zeigte. In der vorliegenden Arbeit werden der aktuelle Stellenwert und die klinische Anwendbarkeit der unterschiedlichen FD-3DE-basierten Methoden zur Schwergradbeurteilung von Herzklappenvitien, insbesondere von Klappeninsuffizienzen, ausführlich beschrieben.

Schlüsselwörter

Farbdoppler-Echtzeit-3-D-Echokardiographie Vena-contracta-Fläche PISA Mitralklappeninsuffizienz Aortenklappeninsuffizienz 

Real-time 3D echocardiography for estimation of severity in valvular heart disease

Impact on current guidelines

Abstract

Besides providing spatial anatomic information on heart valves, real-time three-dimensional echocardiography (3DE) combined with color Doppler has the potential to overcome the limitations of flow quantification inherent to conventional 2D color Doppler methods. Recent studies validated the application of color Doppler 3DE (cD-3DE) for the quantification of regurgitation flow based on the vena contracta area (VCA) and the proximal isovelocity surface area (PISA) methods. Particularly the assessment of VCA by cD-3DE led to a change of paradigm by understanding of the VCA as being strongly asymmetric in the majority of patients and etiologies. This review provides a comprehensive description of the different concepts of cD-3DE-based flow quantification in the setting of different valvular heart diseases and their presentation in recent guidelines.

Keywords

Color Doppler real-time 3D echocardiography Vena contracta area Proximal isovelocity surface area Mitral valve insufficiency Aortic valve insufficiency 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

T. Buck, L. Bösche und B. Plicht geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Lancellotti P, Rosenhek R, Pibarot P et al (2013) ESC Working Group on Valvular Heart Disease Position Paper – heart valve clinics: organization, structure, and experiences. Eurheart J 34:1597–1606Google Scholar
  2. 2.
    Yoganathan AP, Cape EG, Sung HW et al (1988) Review of hydrodynamic principles for the cardiologist: applications to the study of blood flow and jets by imaging techniques. J Am Coll Cardiol 12:1344–1353CrossRefPubMedGoogle Scholar
  3. 3.
    Baumgartner H, Schima H, Kuhn P (1991) Value and limitations of proximal jet dimensions for the quantitation of valvular regurgitation: an in vitro study using Doppler flow imaging. J Am Soc Echocardiogr 4:57–66CrossRefPubMedGoogle Scholar
  4. 4.
    Fehske W, Omran H, Manz M et al (1994) Color-coded doppler imaging of the vena contracta as a basis for quantification of pure mitral regurgitation. Am J Cardiol 73:268–274CrossRefPubMedGoogle Scholar
  5. 5.
    Hall SA, Brickner ME, Willett DL et al (1997) Assessment of mitral regurgitation severity by doppler color flow mapping of the vena contracta. Circulation 95:636–642CrossRefPubMedGoogle Scholar
  6. 6.
    Schwammenthal E, Chen C, Benning F et al (1994) Dynamics of mitral regurgitant flow and orifice area – physiologic application of the proximal flow convergence method: clinical data and experimental testing. Circulation 90:307–322CrossRefPubMedGoogle Scholar
  7. 7.
    Khanna D, Vengala S, Miller AP et al (2004) Quantification of mitral regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area. Echocardiography 21:737–743CrossRefPubMedGoogle Scholar
  8. 8.
    Yosefy C, Levine RA, Solis J et al (2007) Proximal flow convergence region as assessed by real-time 3‑dimensional echocardiography: challenging the hemispheric assumption. J Am Soc Echocardiogr 20:389–396CrossRefPubMedGoogle Scholar
  9. 9.
    Kahlert P, Plicht B, Schenk IM et al (2008) Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 21:912–921CrossRefPubMedGoogle Scholar
  10. 10.
    Zoghbi WA, Enriquez-Sarano M, Foster E et al (2003) Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 16:777–802CrossRefPubMedGoogle Scholar
  11. 11.
    Lancellotti P, Moura L, Pierard LA et al (2010) European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr 11:307–332CrossRefPubMedGoogle Scholar
  12. 12.
    Grayburn PA, Weissman NJ, Zamorano JL (2012) Quantitation of mitral regurgitation. Circulation 126:2005–2017CrossRefPubMedGoogle Scholar
  13. 13.
    Vahanian A, Alfieri O, Andreotti F et al (2012) Guidelines on the management of valvular heart disease (version 2012). Eur Heart J 33:2451–2496CrossRefPubMedGoogle Scholar
  14. 14.
    Bonow RO, Carabello RA, Chatterjee K et al (2006) ACC/AHA 2006 guidelines for the management of patients with valvular heart disease. J Am Coll Cardiol 48:e1–e148CrossRefPubMedGoogle Scholar
  15. 15.
    Buck T, Plicht B, Erbel R (2006) Current recommendations on echocardiographic evaluation of the severity of mitral regurgitation: standardization and practical application using a scoring system. Herz 31:30–37CrossRefPubMedGoogle Scholar
  16. 16.
    Lang RM, Badano LP, Tsang W et al (2012) EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging 13:1–46CrossRefPubMedGoogle Scholar
  17. 17.
    Buck T (2015) Valvular heart disease – insufficiencies. In: Buck T, Franke A, Monaghan MJ (Hrsg). Three-dimensional echocardiography (2. Aufl.). Springer, Berlin Heidelberg, S 117–170Google Scholar
  18. 18.
    Buck T, Plicht B, Kahlert P, Erbel R (2013) Understanding the asymmetrical vena contracta area: the difficult relationship between 2D and 3D measurements. JACC Cardiovasc Imaging 6:744CrossRefPubMedGoogle Scholar
  19. 19.
    Marsan NA, Westenberg JJ, Ypenburg C et al (2009) Quantification of functional mitral regurgitation by real-time 3D echocardiography: comparison with 3D velocity-encoded cardiac magnetic resonance. JACC Cardiovasc Imaging 2:1245–1252CrossRefPubMedGoogle Scholar
  20. 20.
    Plicht B, Kahlert P, Goldwasser R et al (2008) Direct quantification of mitral regurgitant flow volume by real-time three-dimensional echocardiography using dealiasing of color Doppler flow at the vena contracta. J Am Soc Echocardiogr 21:1337–1346CrossRefPubMedGoogle Scholar
  21. 21.
    Skaug TR, Hergum T, Amundsen BH et al (2010) Quantification of mitral regurgitation using high pulse repetition frequency three-dimensional color doppler. J Am Soc Echocardiogr 23:1–8CrossRefPubMedGoogle Scholar
  22. 22.
    Recusani F, Bargiggia GS, Yoganathan AP et al (1991) A new method for quantification of regurgitant flow rate using color flow imaging of the flow convergence region proximal to a discrete orifice: an vitro study. Circulation 83:594–604CrossRefPubMedGoogle Scholar
  23. 23.
    Utsunomiya T, Ogawa T, Doshi R et al (1991) Doppler color flow „proximal isovelocity surface area“ method for estimating volume flow rate: effects of orifice shape and machine factors. J Am Coll Cardiol 17:1103–1111CrossRefPubMedGoogle Scholar
  24. 24.
    Buck T, Jansen CHP, Yoganathan AP et al (1998) Hemisphere versus hemiellipse: when is each most accurate for proximal isovelocity calculation of regurgitant flows. J Am Coll Cardiol 31:385ACrossRefGoogle Scholar
  25. 25.
    Iwakura K, Ito H, Kawano S et al (2006) Comparison of orifice area by transthoracic three-dimensional doppler echocardiography versus proximal isovelocity surface area (PISA) method for assessment of mitral regurgitation. Am J Cardiol 97:1630–1637CrossRefPubMedGoogle Scholar
  26. 26.
    Matsumura Y, Saracino G, Sugioka K et al (2008) Determination of regurgitant orifice area with the use of a new three-dimensional flow convergence geometric assumption in functional mitral regurgitation. J Am Soc Echocardiogr 21:1251–1256CrossRefPubMedGoogle Scholar
  27. 27.
    Ziani AB, Latcu DG, Abadir S et al (2009) Assessment of proximal isovelocity surface area (PISA) shape using three-dimensional echocardiography in a paediatric population with mitral regurgitation or ventricular shunt. Arch Cardiovasc Dis 102:185–191CrossRefPubMedGoogle Scholar
  28. 28.
    Matsumura Y, Fukuda S, Tran H et al (2008) Geometry of the proximal isovelocity surface area in mitral regurgitation by 3‑dimensional color doppler echocardiography: difference between functional mitral regurgitation and prolapse regurgitation. Am Heart J 155:231–238CrossRefPubMedGoogle Scholar
  29. 29.
    Ashikhmina E, Shook D, Cobey F et al (2015) Three-dimensional versus two-dimensional echocardiographic assessment of functional mitral regurgitation proximal isovelocity surface area. Anesth Analg 120:534–542CrossRefPubMedGoogle Scholar
  30. 30.
    Quaini A, Canic S, Guidoboni G et al (2011) A three-dimensional computational fluid dynamics model of regurgitant mitral valve flow: validation against in vitro standards and 3D color doppler methods. Cardiovasc Eng Technol 2:77–89CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Grady L, Datta S, Kutter O et al (2011) Regurgitation quantification using 3D PISA in volume echocardiography. Med Image Comput Comput Assist Interv 14:512–519PubMedGoogle Scholar
  32. 32.
    de Agustin JA, Marcos-Alberca P, Fernandez-Golfin C et al (2012) Direct measurement of proximal isovelocity surface area by single-beat three-dimensional color doppler echocardiography in mitral regurgitation: a validation study. J Am Soc Echocardiogr 25:815–823CrossRefPubMedGoogle Scholar
  33. 33.
    Thavendiranathan P, Liu S, Datta S et al (2013) Quantification of chronic functional mitral regurgitation by automated 3‑dimensional peak and integrated proximal isovelocity surface area and stroke volume techniques using real-time 3‑dimensional volume color Doppler echocardiography: in vitro and clinical validation. Circ Cardiovasc Imaging 6:125–133CrossRefPubMedGoogle Scholar
  34. 34.
    Otsuji Y, Handschumacher MD, Schwammenthal E et al (1997) Insights from three-dimensional echocardiography into the mechanism of functional mitral regurgitation: direct in vivo demonstration of altered leaflet tethering geometry. Circulation 96:1999–2008CrossRefPubMedGoogle Scholar
  35. 35.
    Grigioni F, Enriquez-Sarano M, Zehr KJ et al (2001) Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation 103:1759–1764CrossRefPubMedGoogle Scholar
  36. 36.
    Little SH, Pirat B, Kumar R et al (2008) Three-dimensional color doppler echocardiography for direct measurement of vena contracta area in mitral regurgitation: in vitro validation and clinical experience. JACC Cardiovasc Imaging 1:695–704CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Shanks M, Siebelink HM, Delgado V et al (2010) Quantitative assessment of mitral regurgitation: comparison between three-dimensional transesophageal echocardiography and magnetic resonance imaging. Circ Cardiovasc Imaging 3:694–700CrossRefPubMedGoogle Scholar
  38. 38.
    Yosefy C, Hung J, Chua S et al (2009) Direct measurement of vena contracta area by real-time 3‑dimensional echocardiography for assessing severity of mitral regurgitation. Am J Cardiol 104:978–983CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hyodo E, Iwata S, Tugcu A et al (2012) Direct measurement of multiple vena contracta areas for assessing the severity of mitral regurgitation using 3D TEE. JACC Cardiovasc Imaging 5:669–676CrossRefPubMedGoogle Scholar
  40. 40.
    Zeng X, Levine RA, Hua L et al (2011) Diagnostic value of vena contracta area in the quantification of mitral regurgitation severity by color Doppler 3D echocardiography. Circ Cardiovasc Imaging 4:506–513CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Plicht B, Kahlert P, Grave T et al (2012) Immediate reduction of RT3D color Doppler vena contracta area after transcatheter mitral leaflet repair: Influence of the EVEREST criteria. Eur J Echocardiography 13(S1):i184Google Scholar
  42. 42.
    Altiok E, Hamada S, Brehmer K et al (2012) Analysis of procedural effects of percutaneous edge-to-edge mitral valve repair by 2D and 3D echocardiography. Circ Cardiovasc Imaging 5:748–755CrossRefPubMedGoogle Scholar
  43. 43.
    Buck T, Mucci RA, Guerrero JL et al (2000) The power-velocity integral at the vena contracts – A new method for direct quantification of regurgitant volume flow. Circulation 102:1053–1061CrossRefPubMedGoogle Scholar
  44. 44.
    Buck T, Plicht B, Hunold P et al (2005) Broad-beam spectral Doppler sonification of the vena contracta using matrix-array technology – A new solution for semi-automated quantification of mitral regurgitant flow volume and orifice area. J Am Coll Cardiol 45:770–779CrossRefPubMedGoogle Scholar
  45. 45.
    Hopmeyer J, He S, Thorvig KM et al (1998) Estimation of mitral regurgitation with a hemielliptic curve-fitting algorithm: in vitro experiments with native mitral valves. J Am Soc Echocardiogr 11:322–331CrossRefPubMedGoogle Scholar
  46. 46.
    Choi J, Heo R, Hong GR et al (2014) Differential effect of 3‑dimensional color doppler echocardiography for the quantification of mitral regurgitation according to the severity and characteristics. Circ Cardiovasc Imaging 7:535–544CrossRefPubMedGoogle Scholar
  47. 47.
    Chandra S, Salgo IS, Sugeng L et al (2011) A three-dimensional insight into the complexity of flow convergence in mitral regurgitation: adjunctive benefit of anatomic regurgitant orifice area. Am J Physiol Heart Circ Physiol 301:H1015–H1024CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Buck T, Plicht B, Kahlert P et al (2008) Effect of dynamic flow rate and orifice area on mitral regurgitant stroke volume quantification using the proximal Isovelocity surface area method. J Am Coll Cardiol 52:767–778CrossRefPubMedGoogle Scholar
  49. 49.
    Schmidt FP, Gniewosz T, Jabs A et al (2014) Usefulness of 3D-PISA as compared to guideline endorsed parameters for mitral regurgitation quantification. Int J Cardiovasc Imaging 30:1501–1508CrossRefPubMedGoogle Scholar
  50. 50.
    Thomas L, Foster E, Hoffman JI, Schiller NB (1999) The mitral regurgitation index: an echocardiographic guide to severity. J Am Coll Cardiol 33:2016–2022CrossRefPubMedGoogle Scholar
  51. 51.
    Son JW, Chang HJ, Lee JK et al (2013) Automated quantification of mitral regurgitation by three dimensional real time full volume color doppler transthoracic echocardiography: a validation with cardiac magnetic resonance imaging and comparison with two dimensional quantitative methods. J Cardiovasc Ultrasound 21:81–89CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Chu JW, Levine RA, Chua S et al (2008) Assessing mitral valve area and orifice geometry in calcific mitral stenosis: a new solution by real-time three-dimensional echocardiography. J Am Soc Echocardiogr 21:1006–1009CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zamorano J, Cordeiro P, Sugeng L et al (2004) Real-time three-dimensional echocardiography for rheumatic mitral valve stenosis evaluation: an accurate and novel approach. J Am Coll Cardiol 43:2091–2096CrossRefPubMedGoogle Scholar
  54. 54.
    de Agustin JA, Mejia H, Viliani D, Marcos-Alberca P et al (2014) Proximal flow convergence method by three-dimensional color doppler echocardiography for mitral valve area assessment in rheumatic mitral stenosis. J Am Soc Echocardiogr 27:838–845CrossRefPubMedGoogle Scholar
  55. 55.
    Fang L, Hsiung MC, Miller AP et al (2005) Assessment of aortic regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area: usefulness and validation. Echocardiography 22:775–781CrossRefPubMedGoogle Scholar
  56. 56.
    Chin CH, Chen CH, Lo HS (2010) The correlation between three-dimensional vena contracta area and aortic regurgitation index in patients with aortic regurgitation. Echocardiography 27:161–166CrossRefPubMedGoogle Scholar
  57. 57.
    Ewe SH, Delgado V, van Geest R (2013) Accuracy of three-dimensional versus two-dimensional echocardiography for quantification of aortic regurgitation and validation by three-dimensional three-directional velocity-encoded magnetic resonance imaging. Am J Cardiol 112:560CrossRefPubMedGoogle Scholar
  58. 58.
    Sato H, Ohta T, Hiroe K et al (2015) Severity of aortic regurgitation assessed by area of vena contracta: a clinical two-dimensional and three-dimensional color Doppler imaging study. Cardiovasc Ultrasound 13:24CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Poh KK, Levine RA, Solis J et al (2008) Assessing aortic valve area in aortic stenosis by continuity equation: a novel approach using real-time three-dimensional echocardiography. Eur Heart J 29:2526–2535CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Tribouilloy CM, Enriquez-Sarano M, Bailey KR et al (2000) Quantification of tricuspid regurgitation by measuring the width of the vena contracta with Doppler color flow imaging: a clinical study. J Am Coll Cardiol 36:472–478CrossRefPubMedGoogle Scholar
  61. 61.
    de Agustin JA, Viliani D, Vieira C et al (2013) Proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography applied for tricuspid regurgitation quantification. J Am Soc Echocardiogr 26:1063–1072CrossRefPubMedGoogle Scholar
  62. 62.
    Zamorano JL, Badano LP, Bruce C et al (2011) EAE/ASE recommendations for the use of echocardiography in new transcatheter interventions for valvular heart disease. Eur J Echocardiogr 12:557–584CrossRefPubMedGoogle Scholar
  63. 63.
    Kim MS, Casserly IP, Garcia JA et al (2009) Percutaneous transcatheter closure of prosthetic mitral paravalvular leaks: are we there yet? JACC Cardiovasc Interv 2:81–90CrossRefPubMedGoogle Scholar
  64. 64.
    Becerra JM, Almeria C, de Isla PL, Zamorano J (2009) Usefulness of 3D transoesophageal echocardiography for guiding wires and closure devices in mitral perivalvular leaks. Eur J Echocardiogr 10:979–981PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag Berlin 2017

Authors and Affiliations

  1. 1.Medizinische Klinik III, Klinik für KardiologieKlinikum WestfalenDortmundDeutschland
  2. 2.Medizinische Universitätsklinik II – Kardiologie und AngiologieBerufsgenossenschaftliches Universitätsklinikum BergmannsheilBochumDeutschland

Personalised recommendations