Herz

, Volume 42, Issue 3, pp 287–294 | Cite as

Contrast echocardiography for detection of myocardial perfusion abnormalities

A clinical perspective
Main topic

Abstract

Myocardial contrast echocardiography (MCE) is a well-established imaging technique in the assessment of patients with known or suspected coronary artery disease. The use of ultrasound contrast agents has optimized the evaluation of left ventricular function and, moreover, permits simultaneous assessment of the myocardial perfusion. This technique utilizes microbubbles that remain in the intravascular space and the contrast intensity reflects the concentration of the microbubbles in the myocardium. A homogeneous opacification of the myocardium after destruction of the microbubbles during high-power imaging is regarded as normal perfusion and absence of CAD. If the replenishment rate is reduced, this is suggestive of significant CAD. In comparison with other techniques, MCE shows comparable sensitivity, specificity, and diagnostic accuracy while it is an easy-to-perform bedside technique that can be a valuable tool for the clinician.

Keywords

Contrast echocardiography Perfusion imaging Myocardium Contrast agents Coronary artery disease 

Kontrastechokardiographie zur Erkennung von Auffälligkeiten der Myokardperfusion

Eine klinische Sichtweise

Zusammenfassung

Die Myokardkontrastechokardiographie (MCE) ist ein wohletabliertes bildgebendes Verfahren zur Untersuchung von Patienten mit bekannter koronarer Herzkrankheit (KHK) oder dem Verdacht darauf. Die Verwendung von Ultraschallkontrastmitteln hat zur Optimierung der Beurteilung der linksventrikulären Funktion geführt und ermöglicht außerdem die gleichzeitige Einschätzung der Myokardperfusion. Bei diesem Verfahren werden Mikrobläschen verwendet, die im Intravaskulärraum bleiben; die Kontrastintensität spiegelt die Konzentration der Mikrobläschen im Myokard wider. Eine homogene Trübung des Myokards nach Zerstörung der Mikrobläschen während der Untersuchung mittels Hochleistungsbildgebung gilt als normale Perfusion ohne Anhalt für eine KHK. Wenn die Wiederauffüllungsrate vermindert ist, gilt das als Hinweis auf eine erhebliche KHK. Im Vergleich zu anderen Verfahren weist die MCE eine vergleichbare Sensitivität, Spezifität und diagnostische Genauigkeit auf und ist dabei eine leicht am Krankenbett durchzuführende Technik, die ein wertvolles Werkzeug für den Kliniker darstellen kann.

Schlüsselwörter

Kontrastechokardiographie Perfusionsbildgebung Myokard Kontrastmittel Koronare Herzkrankheit 

Notes

Compliance with ethical guidelines

Conflict of interest

N. Karogiannis has no competing interests. R. Senior received speaker fees from Bracco, Milan, Italy Philips Healthcare, Eindhoven, Holland and Lantheus Medical Imaging, Boston, USA.

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Hoffmann R, von Bardeleben S, Ten Cate F (2005) Assessment of systolic left ventricular function: a multi-centre comparison of cineventriculography, cardiac magnetic resonance imaging, unenhanced and contrast-enhanced echocardiography. Eur Heart J 26:607–616CrossRefPubMedGoogle Scholar
  2. 2.
    Mistry N, Halvorsen S, Hoffmann P (2010) Assessment of left ventricular function with magnetic resonance imaging vs. echocardiography, contrast echocardiography, and single-photon emission computed tomography in patients with recent ST-elevation myocardial infarction. Eur J Echocardiogr 11:793–800PubMedGoogle Scholar
  3. 3.
    Malm S, Frigstad S, Sagberg E (2004) Accurate and reproducible measurement of left ventricular volume and ejection fraction by contrast echocardiography: A comparison with magnetic resonance imaging. J Am Coll Cardiol 44:1030–1035CrossRefPubMedGoogle Scholar
  4. 4.
    Porter TR, Abdelmoneim S, Belcik JT, McCulloch ML, Mulvagh SL, Olson JJ, Porcelli C, Tsutsui JM, Wei K (2014) Guidelines for the cardiac sonographer in the performance of contrast echocardiography: a focused update from the American Society of Echocardiography. J Am Soc Echocardiogr 27:797–810CrossRefPubMedGoogle Scholar
  5. 5.
    Optison Product Information 2014. Available at http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000166/WC500059461.pdf. Last access: 20 December 2016
  6. 6.
    Luminity Summary of Product Characteristics 2016. Lantheus MI UK Limited. Available at http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000654/WC500045020.pdf.
  7. 7.
    Sonovue Product Information, 2014. Available at www.ema.europa.eu/docs/en_GB/document_library/.../WC500170218.pdf. Last access: 20 December 2016
  8. 8.
    Porter TR, Xie F (2015) Contrast echocardiography: latest developments and clinical utility. Curr Cardiol Rep 17:569CrossRefPubMedGoogle Scholar
  9. 9.
    Aggeli C, Giannopoulos G, Roussakis G et al (2008) Safety of myocardial flash contrast echocardiography in combination with dobutamine stress testing for detection of ischemia in 5250 studies. Heart 94:1571–1577CrossRefPubMedGoogle Scholar
  10. 10.
    Wever-Pinzon O, Suma V, Ahuja A et al (2012) Safety of echocardiographic contrast in hospitalized patients with pulmonary hypertension: a multi-center study. Eur Heart J Cardiovasc Imaging 13(10):857–862CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Goldberg YH, Ginelli P, Siegel R, Spevack DM et al (2012) Administration of perflutren contrast agents during transthoracic echocardiography is not associated with a significant increase in acute mortality risk. Cardiology 122:119–125CrossRefPubMedGoogle Scholar
  12. 12.
    Platts DG, Luis SA, Roper D, Pascoe R et al (2013) The safety profile of perflutren microsphere contrast echocardiography during rest and stress imaging: results from an Australian multicentre cohort. Heart Lung Circ 22:996–1002CrossRefPubMedGoogle Scholar
  13. 13.
    Kalra A, Shroff GR, Erlien D, Herzog CA et al (2014) Perflutren-based echocardiographic contrast in patients with right-to-left intracardiac shunts. JACC Cardiovasc Imaging 7:206–207CrossRefPubMedGoogle Scholar
  14. 14.
    Kutty S, Xiao Y, Olson J, Porter TR (2016) Safety and efficacy of cardiac ultrasound contrast in children and adolescents for resting and stress echocardiography. J Am Soc Echocardiogr 29(7):655–662CrossRefPubMedGoogle Scholar
  15. 15.
    Kaul S, Jayaweera AR (1997) Coronary and myocardial blood volumes: noninvasive tools to assess the coronary microcirculation. Circulation 96:719–724PubMedGoogle Scholar
  16. 16.
    Wei K, Jayaweera AR, Firoozan S, Kaul S et al (1998) Basis for detection of stenosis using venous administration of microbubbles during myocardial contrast echocardiography: bolus or continuous infusion? J Am Coll Cardiol 32:252–260CrossRefPubMedGoogle Scholar
  17. 17.
    Wei K, Jayaweera AR, Firoozan S, Kaul S et al (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97:473–483CrossRefPubMedGoogle Scholar
  18. 18.
    Rakhit DJ, Monaghan M, Nihoyannopoulos P, Senior R et al (2007) The clinical applications of myocardial contrast echocardiography. Eur J Echocardiogr 8(3):S24–S29CrossRefPubMedGoogle Scholar
  19. 19.
    Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33(1):87–94CrossRefPubMedGoogle Scholar
  20. 20.
    Janardhanan R, Swinburn JM, Greaves K, Senior R (2003) Usefulness of myocardial contrast echocardiography using low-power continuous imaging early after acute myocardial infarction to predict late functional left ventricular recovery. Am J Cardiol 92:493–497CrossRefPubMedGoogle Scholar
  21. 21.
    Gould KL (2009) Does coronary flow trump coronary anatomy? JACC Cardiovasc Imaging 2(8):1009–1023CrossRefPubMedGoogle Scholar
  22. 22.
    Iskandrian AE (2007) A new generation of coronary vasodilators in stress perfusion imaging. Am J Cardiol 99(11):1619–1620CrossRefPubMedGoogle Scholar
  23. 23.
    Beleslin BD, Ostojic M, Stepanovic J et al (1994) Stress echocardiography in the detection of myocardial ischemia. Head-to-head comparison of exercise, dobutamine, and dipyridamole tests. Circulation 90(3):1168–1176CrossRefPubMedGoogle Scholar
  24. 24.
    Sochowski RA, Yvorchuk KJ, Yang Y et al (1995) Dobutamine and dipyridamole stress echocardiography in patients with a low incidence of severe coronary artery disease. J Am Soc Echocardiogr 8(4):482–487CrossRefPubMedGoogle Scholar
  25. 25.
    Dijkmans PA, Senior R, Becher H et al (2006) Myocardial contrast echocardiography evolving as a clinically feasible technique for accurate, rapid and safe assessment of myocardial perfusion: evidence so far. J Am Coll Cardiol 48(11):2168–2177CrossRefPubMedGoogle Scholar
  26. 26.
    Abdelmoneim SS, Dhoble A, Bernier M et al (2009) Quantitative myocardial contrast echocardiography during pharmacological stress for diagnosis of coronary artery disease: a systematic review and meta-analysis of diagnostic accuracy studies. Eur J Echocardiogr 10(7):813–825PubMedGoogle Scholar
  27. 27.
    Senior R, Monaghan M, Main ML et al (2009) Detection of coronary artery disease with perfusion stress echocardiography using novel ultrasound imaging agent: two phase 3 international trials in comparison with radionuclide perfusion imaging. Eur J Echocardiogr 10(1):26–35CrossRefPubMedGoogle Scholar
  28. 28.
    Senior R, Moreo A, Gaibazzi N et al (2013) Comparison of sulphur hexafluoride(sonovue)-enhanced myocardial contrast echocardiography with gated single-photon emission computed tomography for detection of significant coronary artery disease: a large European multicenter study. J Am Coll Cardiol 62(15):1353–1361CrossRefPubMedGoogle Scholar
  29. 29.
    Senior R, Leper W, Pasquet A et al (2004) Myocardial perfusion assessment in patients with medium probability of coronary artery disease and no prior myocardial infarction: a comparison of myocardial contrast echocardiography with 99mTc single photon emission tomography. Am Heart J 147:1100–1105CrossRefPubMedGoogle Scholar
  30. 30.
    Hayat SA, Dwivedi G, Jacobsen A et al (2008) Effects of left bundle-branch block on cardiac structure, perfusion and perfusion reserve: implications for myocardial contrast echocardiography versus radionuclide perfusion imaging for detection of coronary artery disease. Circulation 117(14):1832–1841CrossRefPubMedGoogle Scholar
  31. 31.
    Chiou KR, Huang WC, Tsay DG et al (2004) Real-time dobutamine stress myocardial contrast echocardiography for detecting coronary artery disease: correlating abnormal wall motion and disturbed perfusion. Can J Cardiol 20:1237–1243PubMedGoogle Scholar
  32. 32.
    Elhendy A, O’Leary EL, Xie F, Porter TR et al (2004) Comparative accuracy of real-time myocardial contrast perfusion imaging and wall motion analysis during dobutamine stress echocardiography for the diagnosis of coronary artery disease. J Am Coll Cardiol 44:2185–2191CrossRefPubMedGoogle Scholar
  33. 33.
    Jeetley P, Hickman M, Kamp O, Vannan MA et al (2006) Myocardial contrast echocardiography for the detection of coronary artery stenosis: a prospective multicenter study in comparison with single-photon emission computed tomography. J Am Coll Cardiol 47:141–145CrossRefPubMedGoogle Scholar
  34. 34.
    Gaibazzi N, Reverberi C, Squeri A, De Iaco G et al (2009) Contrast stress echocardiography for the diagnosis of coronary artery disease in patients with chest pain but without acute coronary syndrome: incremental value of myocardial perfusion. J Am Soc Echocardiogr 22(4):404–410CrossRefPubMedGoogle Scholar
  35. 35.
    Gaibazzi N, Rigo F, Reverberi C (2010) Detection of coronary artery disease by combined assessment of wall motion, myocardial perfusion and coronary flow reserve: a multiparametric contrast stress-echocardiography study. J Am Soc Echocardiogr 23(12):1242–1250CrossRefPubMedGoogle Scholar
  36. 36.
    Gaibazzi N, Rigo F, Squeri A, Reverberi C et al (2010) Incremental value of contrast myocardial perfusion to detect intermediate versus severe coronary artery stenosis during stress-echocardiography. Cardiovasc Ultrasound 8:16CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Abdelmoneim SS, Mulvagh SL, Xie F, Porter TR et al (2015) Regadenoson stress real-time myocardial perfusion echocardiography for detection of coronary artery disease: feasibility and accuracy of two different ultrasound contrast agents. J Am Soc Echocardiogr 28(12):1393–1400CrossRefPubMedGoogle Scholar
  38. 38.
    Moir S, Haluska BA, Jenkins C et al (2004) Incremental benefit of myocardial contrast to combined dipyridamole-exercise stress echocardiography for the assessment of coronary artery disease. Circulation 110(9):1108–1113CrossRefPubMedGoogle Scholar
  39. 39.
    Tsutsui JM, Elhendy A, Anderson JR et al (2005) Prognostic value of dobutamine stress myocardial contrast perfusion echocardiography. Circulation 112(10):1444–1450CrossRefPubMedGoogle Scholar
  40. 40.
    Tsutsui JM, Xie F, O’Leary EL et al (2005) Diagnostic accuracy and prognostic value of dobutamine stress myocardial contrast echocardiography in patients with suspected acute coronary syndromes. Echocardiography 22(6):487–489CrossRefPubMedGoogle Scholar
  41. 41.
    Jeetley P, Burden L, Greaves K, Senior R (2007) Prognostic value of myocardial contrast echocardiography in patients presenting to hospital with acute chest pain and negative troponin. Am J Cardiol 99(10):1369–1373CrossRefPubMedGoogle Scholar
  42. 42.
    Dawson D, Kaul S, Peters D et al (2009) Prognostic value of dipyridamole stress myocardial contrast echocardiography:comparison with single photon emission computed tomography. J Am Soc Echocardiogr 22(8):954–960CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gaibazzi N, Reverberi C, Lorenzoni V et al (2012) Prognostic value of high-dose dipyridamole stress myocardial contrast perfusion echocardiography. Circulation 126(10):1217–1224CrossRefPubMedGoogle Scholar
  44. 44.
    Tong KL, Kaul S, Wang XQ et al (2005) Myocardial contrast echocardiography versus thrombolysis in myocardial infarction score in patients presenting to the emergency department with chest pain and a non-diagnostic electrocardiogram. J Am Coll Cardiol 46:920–927CrossRefPubMedGoogle Scholar
  45. 45.
    Jeetley P, Burden L, Greaves K et al (2007) Prognostic value of myocardial contrast echocardiography in patients presenting to hospital with acute chest pain and negative troponin. Am J Cardiol 99(10):1369–1373CrossRefPubMedGoogle Scholar
  46. 46.
    Abdelmoneim SS, Dhoble A, Bernier M et al (2009) Quantitative myocardial contrast echocardiography during pharmacological stress for diagnosis of coronary artery disease: a systematic review and meta-analysis of diagnostic accuracy studies. Eur J Echocardiogr 10(7):813–825PubMedGoogle Scholar
  47. 47.
    Janardhanan R, Swinburn JM, Greaves K, Senior R (2003) Usefulness of myocardial contrast echocardiography using low-power continuous imaging early after acute myocardial infarction to predict late functional left ventricular recovery. Am J Cardiol 92(5):493–497CrossRefPubMedGoogle Scholar
  48. 48.
    Janardhanan R, Burden L, Senior R (2004) Usefulness of myocardial contrast echocardiography in predicting collateral blood flow in the presence of a persistently occluded acute myocardial infarction-related coronary artery. Am J Cardiol 93(10):1207–1201CrossRefPubMedGoogle Scholar
  49. 49.
    Jeetley P, Swinburn J, Hickman M et al (2004) Myocardial contrast echocardiography predicts left ventricular remodelling after acute myocardial infarction. J Am Soc Echocardiogr 17(10):1030–1036CrossRefPubMedGoogle Scholar
  50. 50.
    Dwivedi G, Janardhanan R, Hayat SA, Senior R et al (2007) Prognostic value of myocardial viability detected by myocardial contrast echocardiography early after acute myocardial infarction. j Am Coll Cardiol 50:327–334CrossRefPubMedGoogle Scholar
  51. 51.
    Galiuto L, Garramone B, Scara A et al (2008) The extent of microvascular damage during myocardial contrast echocardiography is superior to other known indexes of post-infarct reperfusion in predicting left ventricular remodeling: results of the multicenter AMICI study. J Am Coll Cardiol 51(5):552–559CrossRefPubMedGoogle Scholar
  52. 52.
    Kloner RA, Rude RE, Carlson N et al (1980) Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion: which comes first? Circulation 62(5):945–952CrossRefPubMedGoogle Scholar
  53. 53.
    Senior R, Swinburn JM (2003) Incremental value of myocardial contrast echocardiography for the prediction of recovery of function in dobutamine non-responsive myocardium early after acute myocardial infarction. Am J Cardiol 91(4):397–402CrossRefPubMedGoogle Scholar
  54. 54.
    Hickman M, Chelliah R, Burden L, Senior R (2010) Resting myocardial blood flow, coronary flow reserve, and contractile reserve in hibernating myocardium: implications for using resting myocardial contrast echocardiography vs. dobutamine echocardiography for the detection of hibernating myocardium. Eur J Echocardiogr 11(9):756–762CrossRefPubMedGoogle Scholar
  55. 55.
    Shimoni S, Frangogiannis NG, Aggelli CJ et al (2003) Identification of hibernating myocardium with quantitative intravenous myocardial contrast echocardiography: comparison with dobutamine echocardiography and thallium-201 scintigraphy. Circulation 107(4):538–544CrossRefPubMedGoogle Scholar
  56. 56.
    Greaves K, Dixon SR, Fejka M, Marber MS et al (2003) Myocardial contrast echocardiography is superior to other known modalities for assessing myocardial reperfusion after acute myocardial infarction. Heart 89:139–144CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Bolognese L, Carrabba N, Parodi G et al (2004) Impact of microvascular dysfunction on left ventricular remodeling and long-term clinical outcome after primary coronary angioplasty for acute myocardial infarction. Circulation 109:1121–1126CrossRefPubMedGoogle Scholar
  58. 58.
    Agati L, Voci P, Autore C et al (1997) Combined use of dobutamine echocardiography and myocardial contrast echocardiography in predicting regional dysfunction recovery after coronary revascularization in patients with recent myocardial infarction. Eur Heart J 18:771–779CrossRefPubMedGoogle Scholar
  59. 59.
    Main ML, Magalski A, Chee NK, Good TH et al (2001) Full-motion pulse inversion power doppler contrast echocardiography differentiates stunning from necrosis and predicts recovery of left ventricular function after acute myocardial infarction. J Am Coll Cardiol 38:1390–1394CrossRefPubMedGoogle Scholar
  60. 60.
    Main ML, Magalski A, Morris BA, Good TH et al (2002) Combined assessment of microvascular integrity and contractile reserve improves differentiation of stunning and necrosis after acute anterior wall myocardial infarction. J Am Coll Cardiol 40:1079–1084CrossRefPubMedGoogle Scholar
  61. 61.
    Lepper W, Kamp O, Vanoverschelde JL, Pasquet A et al (2002) Intravenous myocardial contrast echocardiography predicts left ventricular remodeling in patients with acute myocardial infarction. J Am Soc Echocardiogr 15:849–856CrossRefPubMedGoogle Scholar
  62. 62.
    Hillis GS, Mulvagh SL, Pellikka PA, Wright RS et al (2003) Comparison of intravenous myocardial contrast echocardiography and low-dose dobutamine echocardiography for predicting left ventricular functional recovery following acute myocardial infarction. Am J Cardiol 92:504–508CrossRefPubMedGoogle Scholar
  63. 63.
    Aggeli C, Stefanadis C, Bonou M, Roussakis G et al (2003) Prediction of functional recovery of hibernating myocardium using harmonic power Doppler imaging and dobutamine stress echocardiography in patients with coronary artery disease. Am J Cardiol 91:1415–1420CrossRefPubMedGoogle Scholar
  64. 64.
    Hillis GS, Mulvagh SL, Gunda M, Oh JK et al (2003) Contrast echocardiography using intravenous octafluoropropane and real-time perfusion imaging predicts functional recovery after acute myocardial infarction. J Am Soc Echocardiogr 16:638–645CrossRefPubMedGoogle Scholar
  65. 65.
    Sbano JC, Tsutsui JM, Andrade JL, Franchini Ramires J et al (2005) Detection of functional recovery using low-dose dobutamine and myocardial contrast echocardiography after acute myocardial infarction treated with successful thrombolytic therapy. Echocardiography 22:496–502CrossRefPubMedGoogle Scholar
  66. 66.
    Janardhanan R, Moon JC, Pennell DJ et al (2005) Myocardial contrast echocardiography accurately reflects transmurality of myocardial necrosis and predicts contractile reserve after acute myocardial infarction. Am Heart J 149(2):355–362CrossRefPubMedGoogle Scholar
  67. 67.
    Hickman M, Janardhanan R, Dwivedi G, Senior R et al (2007) Clinical significance of perfusion techniques utilising different physiological mechanisms to detect myocardial viability: a comparative study with myocardial contrast echocardiography and single photon emission computed tomography. Int J Cardiol 114:139–140CrossRefPubMedGoogle Scholar
  68. 68.
    Huang WC, Chiou KR, Liu CP et al (2005) Comparison of real-time contrast echocardiography and low-dose dobutamine stress echocardiography in predicting the left ventricular functional recovery in patients after acute myocardial infarction under different therapeutic intervention. Int J Cardiol 104:81–91CrossRefPubMedGoogle Scholar
  69. 69.
    Abe Y, Muro T, Sakanoue Y et al (2005) Intravenous myocardial contrast echo-cardiography predicts regional and global left ventricular remodeling after acute myocardial infarction: comparison with low dose dobutamine stress echocardiography. Heart 91:1578–1583CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Korosoglou G, Labadze N, Giannitsis E et al (2005) Usefulness of real-time myocardial perfusion imaging to evaluate tissue level reperfusion in patients with non-ST-elevation myocardial infarction. Am J Cardiol 95:1033–1038CrossRefPubMedGoogle Scholar
  71. 71.
    Tousek P, Penicka M, Tintera J, Gregor P et al (2008) Identification of hibernating myocardium with myocardial contrast echocardiography – Comparison with late gadolinium-enhanced magnetic resonance. Int J Cardiol 128(1):117–120CrossRefPubMedGoogle Scholar
  72. 72.
    Fernandes DR, Tsutsui JM, Bocchi EA, Mathias W Jr et al (2011) Qualitative and quantitative real time myocardial contrast echocardiography for detecting hibernating myocardium. Echocardiography 28(3):342–349 (Mar)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag Berlin 2017

Authors and Affiliations

  1. 1.Department of EchocardiographyRoyal Brompton HospitalLondonUK
  2. 2.Department of Cardiovascular MedicineNorthwick Park HospitalHarrowUK
  3. 3.National Heart and Lung InstituteImperial CollegeLondonUK

Personalised recommendations