Herz

, Volume 42, Issue 3, pp 232–240 | Cite as

Neues und Bewährtes in der kardiologischen Diagnostik mithilfe der TEE

Wird die 3‑D-Technik in der klinischen Routine benötigt?
  • A. Hagendorff
  • S. Stoebe
  • D. Jurisch
  • M. Neef
  • M. Metze
  • D. Pfeiffer
Schwerpunkt
  • 220 Downloads

Zusammenfassung

Die transösophageale Echokardiographie (TEE) ermöglicht im Vergleich zur transthorakalen Echokardiographie (TTE) die Akquisition von Bildsequenzen mit besserer räumlicher Auflösung infolge der Verwendung höherer Schallfrequenzen. Dadurch können prinzipiell Morphologie und Funktion vieler kardialer Strukturen in der TEE genauer als in der TTE analysiert werden. In einem dreidimensionalen (3-D-) TEE-Volumendatensatz können zudem standardisierte Schnittebenen eingestellt werden, die eine quantitative Beurteilung der Zielstrukturen zulassen. So können sowohl die Größe als auch die Funktion des linken Ventrikels (LV) objektiv und reproduzierbar ausgemessen werden. Das enddiastolische LV-Volumen und das totale Schlagvolumen des LV bei Klappenerkrankungen sind daher exakt zu bestimmen. Weiterhin können spezielle kardiologische Strukturen, die durch 2‑D-Schnittbilder nicht vollständig zu analysieren sind, durch die 3‑D-TEE komplett evaluiert werden. So ist z. B. im 2‑D-Bild nur die Ausmessung der rechtskoronaren Tasche der Aortenklappe möglich, da nur diese Tasche in der konventionellen Schnittebenendarstellung zentral getroffen wird. In der 3‑D-TEE können durch Nachbearbeitung im 3‑D-Volumendatensatz auch die akoronare und die linkskoronare Tasche in der jeweiligen zentralen Schnittebene ausgewertet werden. Weitere wichtige Strukturen der 3‑D-TEE-Analysen sind das linke Vorhofohr, das interatriale Septum und die Mitralklappe. Die Planimetrie von Klappen- und Regurgitationsöffnungen sowie das Monitoring bei Interventionen zur Behandlung struktureller Herzerkrankungen sind weitere Einsatzbereiche der klinisch etablierten 3‑D-TEE-Diagnostik.

Schlüsselwörter

Transösophageale Echokardiographie Transthorakale Echokardiographie Volumenbestimmung Klappenerkrankungen Dreidimensionale Bildgebung 

New and established aspects of cardiological diagnostics using TEE

Do we need 3D technology in clinical routine?

Abstract

In comparison to transthoracic echocardiography (TTE) transesophageal echocardiography (TEE) enables an acquisition of images with better spatial resolution due to the use of higher ultrasound frequencies. Thus, the morphology and function of cardiac structures can principally be analyzed better and more accurately with TEE than with TTE. In addition, using three-dimensional (3D) TEE data sets standardized sectional planes can be constructed by post-processing, which enables quantitative assessment of the target structures. The size and function of the left ventricle can objectively and reproducibly be measured. End diastolic left ventricular volume and total stroke volume of the left ventricle can be accurately determined in patients with heart valve disease. Furthermore, particular cardiac structures that cannot be totally evaluated by two-dimensional (2D) echocardiography, can be completely analyzed by 3D TEE. In 2D images for example, only analyses of the right coronary cusp of the aortic valve are possible because only the center of the right coronary cusp can be visualized using conventional sectional level presentation. Using 3D TEE the non-coronary cusp and the left coronary cusp can also be visualized in the mid-sectional plane by post-processing of the 3D data set. Additional important structures of 3D TEE analysis are the left atrial auricle, the interatrial septum and the mitral valve. Planimetry of valvular and regurgitation orifices as well as the monitoring of interventions for treatment of structural heart diseases are further fields of application of clinically established 3D TEE diagnostics.

Keywords

Transesophageal echocardiography Transthoracic echocardiography Volume analysis Valvular heart diseases Three-dimensional imaging  

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

A. Hagendorff, S. Stoebe, D. Jurisch, M. Neef, M. Metze und D. Pfeiffer geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Flachskampf FA, Wouters PF, Edvardsen T et al (2014) Recommendations for transoesophageal echocardiography: EACVI update 2014. Eur Heart J Cardiovasc Imaging 15:353–365CrossRefPubMedGoogle Scholar
  2. 2.
    Hung J, Lang R, Flachskampf F et al (2007) 3D echocardiography: a review of the current status and future directions. J Am Soc Echocardiogr 20:213–233CrossRefPubMedGoogle Scholar
  3. 3.
    Shiota T (2008) 3D echocardiography: the present and the future. J Cardiol 52:169–185CrossRefPubMedGoogle Scholar
  4. 4.
    Mor-Avi V, Sugeng L, Lang RM (2009) Real-time 3‑dimensional echocardiography: an integral component of the routine echocardiographic examination in adult patients. Circulation 119:314–329CrossRefPubMedGoogle Scholar
  5. 5.
    Lang RM, Badano LP, Tseng W et al (2012) EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. Eur Heart J 13:1–46Google Scholar
  6. 6.
    Marwick TH (2012) Application of 3D echocardiography to everyday practice. JACC Cardiovasc Imaging 12:1198–1200CrossRefGoogle Scholar
  7. 7.
    Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16:233–271CrossRefPubMedGoogle Scholar
  8. 8.
    Saric M, Armour A, Arnaout S et al (2016) Guidelines for the use of echocardiography in the evaluation of a cardiac source of embolism. J Am Soc Echocardiogr 29:1–42CrossRefPubMedGoogle Scholar
  9. 9.
    Zamorano JL, Badano LP, Bruce C et al (2011) EAE/ASE recommendations for the use of echocardiography in new transcatheter interventions for valvular heart disease. Eur J Echocardiogr 12:557–584CrossRefPubMedGoogle Scholar
  10. 10.
    Zamorano JL, Goncalves A, Lancelotti P et al (2016) The use of imaging in new transcatheter interventions: an EACVI review paper. Eur Heart J Cardiovasc Imaging 17:835–867CrossRefPubMedGoogle Scholar
  11. 11.
    Vaidyanathan B, Simpson JM, Kumar RK (2009) Transesophageal echocardiography for device closure of atrial septal defects. JACC Cardiovasc Imaging 10:1238–1242CrossRefGoogle Scholar
  12. 12.
    Roberson DA, Cui VW (2011) Evaluation of atrial and ventricular septal defects with real-time three-dimensional echocardiography: current status and literature review. Curr Cardiovasc Imaging Rep 4:349–360CrossRefGoogle Scholar
  13. 13.
    Silvestry FE, Cohen MS, Armsby LB et al (2015) Guidelines for the echocardiographic assessment of atrial septal defect and patent foramen ovale: from the American Society of Echocardiography and Society for Cardiac Angiography and Interventions. J Am Soc Echocardiogr 28:910–958CrossRefPubMedGoogle Scholar
  14. 14.
    Chin CH, Chen CH, Lo HS (2010) The correlion between three-dimensional vena contracta area and aortic regurgitation index in patients with aortic regurgitation. Echocardiography 27:161–166CrossRefPubMedGoogle Scholar
  15. 15.
    De la Morena G, Saura D, Oliva MJ et al (2010) Real-time three-dimensional transoesophageal echocardiography in the assessment of aortic valve stenosis. Eur J Echocardiogr 11:9–13CrossRefPubMedGoogle Scholar
  16. 16.
    Habib G, Badano L, Tribouilloy C et al (2010) Recommendations for the practice of echocardiography in infective endocarditis. Eur J Echocardiogr 11:201–219CrossRefGoogle Scholar
  17. 17.
    Lancelotti P, Tribouilloy C, Hagendorff A et al (2013) Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 14:611–644CrossRefGoogle Scholar
  18. 18.
    Bruun NE, Habib G, Thuny F et al (2014) Cardiac imaging in infectious endocarditis. Eur Heart J 35:624–632CrossRefPubMedGoogle Scholar
  19. 19.
    Goldstein SA, Evangelista A, Abbara S et al (2015) Multimodality Imaging of diseases of the thoracic aorta in adults: from the Amercan Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:119–182CrossRefPubMedGoogle Scholar
  20. 20.
    Valocik G, Kamp O, Visser CA (2005) Three-dimensional echocardiography in mitral valve disease. Eur J Echocardiogr 6:443–454CrossRefPubMedGoogle Scholar
  21. 21.
    Schlosshahn D, Aggarwal G, Mathur G et al (2011) Real-time 3D transesophageal echocardiography for the evaluation of rheumatic mitral stenosis. JACC Cardiovasc Imaging 4:508–588Google Scholar
  22. 22.
    Gripari P, Ewe SH, Muratori M et al (2012) Intraoperative 2D and 3D transoesophageal echocardiographic predictors of aortic regurgitation after transcatheter aortic valve implantation. Heart 98:1229–1123CrossRefPubMedGoogle Scholar
  23. 23.
    Smith LA, Dworakowski R, Bhan A et al (2013) Real-time three-dimensional transesophageal echocardiography adds value to transcatheter aortic valve implantation. J Am Soc Echocardiogr 26:359–369CrossRefPubMedGoogle Scholar
  24. 24.
    Wunderlich NC, Siegel RJ (2013) Peri-interventional echo assessment for the MitraClip procedure. Eur Heart J Cardiovasc Imaging 14:935–949CrossRefPubMedGoogle Scholar
  25. 25.
    Boekstegers P, Hausleiter J, Baldus S et al (2014) Percutaneous interventional mitral regurgitation treatment using the Mitra-Clip system. Clin Res Cardiol 103:85–96CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag Berlin 2017

Authors and Affiliations

  • A. Hagendorff
    • 1
  • S. Stoebe
    • 1
  • D. Jurisch
    • 1
  • M. Neef
    • 1
  • M. Metze
    • 1
  • D. Pfeiffer
    • 1
  1. 1.Department für Innere Medizin, Neurologie und Dermatologie, Abteilung für Kardiologie und AngiologieUniversitätsklinikum LeipzigLeipzigDeutschland

Personalised recommendations