Skip to main content
Log in

miR-539 as a key negative regulator of the MEK pathway in myocardial infarction

miR-539 als entscheidender negativer Regulator des MEK-Signalwegs beim Myokardinfarkt

  • Original articles
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Background

Myocardial infarction is one of the most common causes of death, and the number of individuals at risk is increasing. A rapid and accurate differential diagnosis of myocardial infarction is crucial for timely interventions and for improvement of the prognosis. However, it is difficult to achieve using current methods. To better manage this condition, improved tools for risk prediction, including more accurate biomarkers, are needed.

Methods

We studied the expression of microRNA-539 (miR-539) and of MEK protein using a rat model of myocardial infarction.

Results

The results of our experiments demonstrated an increase in the expression of miR-539 and a decrease in the expression of MEK. Furthermore, we observed that miR-539 inhibited the expression of MEK through targeting of the 3’UTR of MEK; this led not only to suppressed proliferation but also to apoptosis and autophagy of H9C2 cells.

Conclusion

Overexpression of miR-539 plays a role in the degree of myocardial infarction. On the basis of our results, we conclude that miR-539 may be a potential therapeutic target for myocardial infarction.

Zusammenfassung

Hintergrund

Der Myokardinfarkt ist eine der häufigsten Todesursachen, und die Anzahl dadurch gefährdeter Patienten steigt. Eine schnelle und genaue Differenzialdiagnostik des Myokardinfarkts ist für rechtzeitige Interventionen und somit für eine bessere Prognose entscheidend. Jedoch ist dies mit den derzeit eingesetzten Verfahren schwer zu erreichen. Um einen Myokardinfarkt besser zu behandeln, sind verbesserte Instrumente der Risikovorhersage einschließlich genauerer Biomarker notwendig.

Methoden

Untersucht wurde die Expression von microRNA-539 (miR-539) und des MEK-Proteins anhand eines Rattenmodells für Myokardinfarkt.

Ergebnisse

Die Ergebnisse der vorliegenden Experimente zeigten eine Zunahme der Expression von miR-539 und eine Abnahme der Expression von MEK. Darüber hinaus stellten die Autoren fest, dass miR-539 die Expression von MEK durch Ansatz an der 3’UTR („3’-untranslated region“) von MEK hemmte, was nicht nur zu einer Unterdrückung der Proliferation, sondern auch zur Apoptose und Autophagie von H9C2-Zellen führte.

Schlussfolgerung

Die Überexpression von miR-539 ist für das Ausmaß des Myokardinfarkts von Bedeutung. Nach den hier vorliegenden Ergebnissen kommen die Autoren zu dem Schluss, dass miR-539 ein potenzielles therapeutisches Ziel beim Myokardinfarkt darstellen könnte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RL, Ambros V (1993) The c. Elegans heterochronic gene lin-4 encodes small rnas with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  2. Bartel DP (2004) Micrornas: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  3. Vasilatou D, Papageorgiou S, Pappa V et al (2010) The role of micrornas in normal and malignant hematopoiesis. Eur J Haematol 84:1–16

  4. Garzon R, Croce CM (2008) Micrornas in normal and malignant hematopoiesis. Curr Opin Hematol 15:352–358

    Article  CAS  PubMed  Google Scholar 

  5. Huang XA, Lin H (2012) The mirna regulation of stem cells. Wiley Interdiscip Rev Membr Transp Signal 1:83–95

    CAS  PubMed  Google Scholar 

  6. Seeger FH, Zeiher AM, Dimmeler S (2013) Micrornas in stem cell function and regenerative therapy of the heart. Arterioscler Thromb Vasc Biol 33:1739–1746

    Article  CAS  PubMed  Google Scholar 

  7. Di Leva G, Calin GA, Croce CM (2006) Micrornas: Fundamental facts and involvement in human diseases. Birth Defects Res C Embryo Today Rev 78:180–189

    Article  Google Scholar 

  8. Thum T, Catalucci D, Bauersachs J (2008) Micrornas: Novel regulators in cardiac development and disease. Cardiovasc Res 79:562–570

    Article  CAS  PubMed  Google Scholar 

  9. Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

  10. Krek A, Grun D, Poy MN et al (2005) Combinatorial microrna target predictions. Nat Genet 37:495–500

  11. Thomas M, Lieberman J, Lal A (2010) Desperately seeking microrna targets. Nat Struct Mol Biol 17:1169–1174

    Article  CAS  PubMed  Google Scholar 

  12. Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5’ UTR as in the 3’ UTR. Proc Natl Acad Sci USA 104:9667–9672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qin W, Shi Y, Zhao B et al (2010) Mir-24 regulates apoptosis by targeting the open reading frame (orf) region of faf1 in cancer cells. PLOS ONE 5:e9429

  14. Catalucci D, Gallo P, Condorelli G (2009) Micrornas in cardiovascular biology and heart disease. Circ Cardiovasc Genet 2:402–408

    Article  CAS  PubMed  Google Scholar 

  15. van Rooij E (2011) The art of microrna research. Circ Res 108:219–234

    Article  PubMed  Google Scholar 

  16. Liu Q, Du GQ, Zhu ZT et al (2015) Identification of apoptosis-related micrornas and their target genes in myocardial infarction post-transplantation with skeletal myoblasts. J Transl Med 13:270

  17. Hu S, Huang M, Li Z et al (2010) MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation 122:S124–S131

  18. Ikeda S, Kong SW, Lu J et al (2007) Altered microrna expression in human heart disease. Physiol Genomics 31:367–373

  19. Devaux Y, Vausort M, McCann GP et al (2013) MicroRNA-150: A novel marker of left ventricular remodeling after acute myocardial infarction. Circ Cardiovasc Genet 6:290–298

  20. Topkara VK, Mann DL (2011) Role of micrornas in cardiac remodeling and heart failure. Cardiovascular drugs and therapy/sponsored by the International Society of Cardiovascular. Pharmacotherapy 25:171–182

    CAS  Google Scholar 

  21. Li Q, Xie J, Li R et al (2014) Overexpression of microrna-99a attenuates heart remodelling and improves cardiac performance after myocardial infarction. J Cell Mol Med 18:919–928

  22. Wang K, Long B, Zhou LY et al (2014) Carl lncrna inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing mir-539-dependent phb2 downregulation. Nat Commun 5:3596

  23. Muthusamy S, DeMartino AM, Watson LJ et al (2014) Microrna-539 is up-regulated in failing heart, and suppresses o‑glcnacase expression. J Biol Chem 289:29665–29676

  24. Hu YW, Hu YR, Zhao JY et al (2014) An agomir of mir-144-3p accelerates plaque formation through impairing reverse cholesterol transport and promoting pro-inflammatory cytokine production. PLOS ONE 9:e94997

  25. Guo B, Zhang Y, Hui Q et al (2016) Naringin suppresses the metabolism of A375 cells by inhibiting the phosphorylation of c‑Src. Tumour Biol 37(3):3841–3850

  26. Xu L, Yates CC, Lockyer P et al (2014) MMI-0100 inhibits cardiac fibrosis in myocardial infarction by direct actions on cardiomyocytes and fibroblasts via mk2 inhibition. J Mol Cell Cardiol 77:86–101

  27. Dorn GW 2nd (2009) Novel pharmacotherapies to abrogate postinfarction ventricular remodeling. Nat Rev Cardiol 6:283–291

    Article  CAS  PubMed  Google Scholar 

  28. Perera RJ, Ray A (2007) Micrornas in the search for understanding human diseases. BioDrugs 21:97–104

    Article  CAS  PubMed  Google Scholar 

  29. Bostjancic E, Zidar N, Glavac D (2009) Microrna microarray expression profiling in human myocardial infarction. Dis Markers 27:255–268

    Article  CAS  PubMed  Google Scholar 

  30. Fasanaro P, D’Alessandra Y, Di Stefano V et al (2008) Microrna-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand ephrin-a3. J Biol Chem 283:15878–15883

  31. Zhou L, Qi X, Potashkin JA et al (2008) Micrornas mir-186 and mir-150 down-regulate expression of the pro-apoptotic purinergic p2x7 receptor by activation of instability sites at the 3’-untranslated region of the gene that decrease steady-state levels of the transcript. J Biol Chem 283:28274–28286

  32. Zhu H, Fan GC (2012) Role of micrornas in the reperfused myocardium towards post-infarct remodelling. Cardiovasc Res 94:284–292

    Article  CAS  PubMed  Google Scholar 

  33. Lee YN, Brandal S, Noel P et al (2011) Kit signaling regulates mitf expression through mirnas in normal and malignant mast cell proliferation. Blood 117:3629–3640

Download references

Acknowledgements

This research was sponsored by the Science and Technology Project of Liaoning Province (2013225089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Huishan PhD.

Ethics declarations

Conflict of interest

J. Hui, W. Huishan, L. Tao, Y. Zhonglu, Z. Renteng, and H. Hongguang declare that they have no competing interests.

This animal study received China medical university animal care and use committee approval. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Authors’ contributions Hui Jiang conceived of the study, carried out the molecular studies, Huishan Wang carried out the molecular studies and helped to draft the manuscript. Tao Liu participated in the design of the study and performed the statistical analysis. Zhonglu Yang participated in its design and coordination and helped to draft the manuscript. Renteng Zhang and Hongguang Han conceived of the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, J., Huishan, W., Tao, L. et al. miR-539 as a key negative regulator of the MEK pathway in myocardial infarction. Herz 42, 781–789 (2017). https://doi.org/10.1007/s00059-016-4517-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-016-4517-2

Keywords

Schlüsselwörter

Navigation