Skip to main content
Log in

Targeting the hedgehog signaling pathway for cardiac repair and regeneration

Der Hedgehog-Signalweg als Zielpunkt bei kardialer Wiederherstellung und Regeneration

  • Review articles
  • Published:
Herz Aims and scope Submit manuscript

Abstract

The hedgehog (Hh) signaling pathway is involved in the angiogenesis and development of the coronary vasculature in the embryonic heart. Recently, the Hh signal pathway has emerged as an important regulator that can increase cardiomyocyte proliferation, inhibit cardiomyocyte death and apoptosis, recruit endothelial progenitor cell (EPCs) into sites of myocardial ischemia, and direct stem cells to differentiate into cardiac muscle lineage. Experimental studies have tried to target the Hh signaling pathway for cardiac repair and regeneration. The purpose of this review is to discuss the role of the Hh signal pathway in cardiac repair and regeneration as well as the current strategies targeting the Hh signaling pathway and its potential in heart diseases.

Zusammenfassung

Der Hedgehog(Hh)-Signalweg ist an der Angiogenese und Entwicklung des koronaren Gefäßsystems im embryonalen Herzen beteiligt. Vor Kurzem hat sich der Hh-Signalweg als ein bedeutender Regulator erweisen, der die Kardiomyozytenproliferation erhöhen, Tod und Apoptose von Kardiomyozyten hemmen, endotheliale Vorläuferzellen („endothelial progenitor cells“, EPC) an Orte myokardialer Ischämie locken und Stammzellen so steuern kann, dass sie zu Zellen der Herzmuskelzellreihe ausdifferenzieren. In experimentellen Studien wurde versucht, auf den Hh-Signalweg bei der kardialen Wiederherstellung und Regeneration abzuzielen. Ziel der vorliegenden Übersichtsarbeit ist es, die Bedeutung des Hh-Signalwegs bei der kardialen Wiederherstellung und Regeneration sowie aktuelle Ansätze, die auf den Hh-Signalweg und sein Potenzial bei Herzerkrankungen abzielen, zu erörtern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Beltrami AP, Urbanek K, al Kajstura Jet (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344:1750–1757. doi:10.1056/NEJM200106073442303

    Article  CAS  PubMed  Google Scholar 

  2. Lin Z, Pu WT (2014) Strategies for cardiac regeneration and repair. Sci Transl Med 6:239rv231. doi:10.1126/scitranslmed.3006681

    Article  Google Scholar 

  3. Washington Smoak I, Byrd NA, Abu-Issa R et al (2005) Sonic hedgehog is required for cardiac outflow tract and neural crest cell developmen. Dev Biol 283:357–372. doi:10.1016/j.ydbio.2005.04.029

    Article  CAS  PubMed  Google Scholar 

  4. Thomas NA, Koudijs M, van Eeden FJ, Joyner AL, Yelon D (2008) Hedgehog signaling plays a cell-autonomous role in maximizing cardiac developmental potential. Development 135:3789–3799. doi:10.1242/dev.024083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roncalli J, Renault MA, Tongers J et al (2011) Sonic hedgehog-induced functional recovery after myocardial infarction is enhanced by AMD3100-mediated progenitor-cell mobilization. J Am Coll Cardiol 57:2444–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ahmed RP, Haider KH, Shujia J, Afzal MR, Ashraf M (2010) Sonic Hedgehog gene delivery to the rodent heart promotes angiogenesis via iNOS/netrin-1/PKC pathway. PLOS ONE 5:e8576. doi:10.1371/journal.pone.0008576

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kusano KF, Pola R, Murayama T et al (2005) Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat Med 11:1197–1204. doi:10.1038/nm1313

    Article  CAS  PubMed  Google Scholar 

  8. Tang T, Wu M, Yang J (2013) Transplantation of MSCs transfected with SHH gene ameliorates cardiac dysfunction after chronic myocardial infarction. Int J Cardiol 168:4997–4999. doi:10.1016/j.ijcard.2013.07.126

    Article  PubMed  Google Scholar 

  9. Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Article  CAS  PubMed  Google Scholar 

  10. Briscoe J, Therond PP (2013) The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14:416–429. doi:10.1038/nrm3598

    Article  PubMed  Google Scholar 

  11. Myers BR, Sever N, Chong YC et al (2013) Hedgehog pathway modulation by multiple lipid binding sites on the smoothened effector of signal response. Dev Cell 26:346–357. doi:10.1016/j.devcel.2013.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yao E, Chuang PT (2015) Hedgehog signaling: From basic research to clinical applications. J Formos Med Assoc 114:569–576. doi:10.1016/j.jfma.2015.01.005

    Article  CAS  PubMed  Google Scholar 

  13. Aberger F, Ruiz IAA (2014) Context-dependent signal integration by the GLI code: the oncogenic load, pathways, modifiers and implications for cancer therapy. Semin Cell Dev Biol 33:93–104. doi:10.1016/j.semcdb.2014.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  14. Karlstrom RO, Tyurina OV, Kawakami A et al (2003) Genetic analysis of zebrafish gli1 and gli2 reveals divergent requirements for gli genes in vertebrate development. Development 130:1549–1564

    Article  CAS  PubMed  Google Scholar 

  15. Murone M, Luoh SM, Stone D et al (2000) Gli regulation by the opposing activities of fused and suppressor of fused. Nat Cell Biol 2:310–312. doi:10.1038/35010610

    Article  CAS  PubMed  Google Scholar 

  16. Banerjee U, Hadden MK (2014) Recent advances in the design of Hedgehog pathway inhibitors for the treatment of malignancies. Expert Opin Drug Discov 9:751–771. doi:10.1517/17460441.2014.920817

    Article  CAS  PubMed  Google Scholar 

  17. Di Magno L, Coni S, Di Marcotullio L, Canettieri G (2015) Digging a hole under Hedgehog: downstream inhibition as an emerging anticancer strategy. Biochim Biophys Acta 1856:62–72. doi:10.1016/j.bbcan.2015.06.003

    PubMed  Google Scholar 

  18. Hadden MK (2014) Hedgehog pathway agonism: therapeutic potential and small-molecule development. ChemMedChem 9:27–37. doi:10.1002/cmdc.201300358

    Article  CAS  PubMed  Google Scholar 

  19. Choi WY, Gemberling M, Wang J et al (2013) In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration. Development 140:660–666. doi:10.1242/dev.088526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xin M, Olson EN, Bassel-Duby R (2013) Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol 14:529–541. doi:10.1038/nrm3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bijlsma MF, Leenders PJ, Janssen BJ, Peppelenbosch MP, Ten Cate H, Spek CA (2008) Endogenous hedgehog expression contributes to myocardial ischemia-reperfusion-induced injury. Exp Biol Med 233:989–996. doi:10.3181/0711-RM-307

    Article  CAS  Google Scholar 

  22. Goddeeris MM, Schwartz R, Klingensmith J, Meyers EN (2007) Independent requirements for Hedgehog signaling by both the anterior heart field and neural crest cells for outflow tract development. Development 134:1593–1604. doi:10.1242/dev.02824

    Article  CAS  PubMed  Google Scholar 

  23. Dyer LA, Kirby ML (2009) Sonic hedgehog maintains proliferation in secondary heart field progenitors and is required for normal arterial pole formation. Dev Biol 330:305–317. doi:10.1016/j.ydbio.2009.03.028;

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Johnson NR, Wang Y (2013) Controlled delivery of sonic hedgehog morphogen and its potential for cardiac repair. PLOS ONE 8:e63075. doi:10.1371/journal.pone.0063075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xiao Q, Yang Y, Qin Y et al (2015) AMP-activated protein kinase-dependent autophagy mediated the protective effect of sonic hedgehog pathway on oxygen glucose deprivation-induced injury of cardiomyocytes. Biochem Biophys Res Commun 457:419–425. doi:10.1016/j.bbrc.2015.01.006

    Article  CAS  PubMed  Google Scholar 

  26. Lavine KJ, White AC, Park C et al (2006) Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev 20:1651–1666. doi:10.1101/gad.1411406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lavine KJ, Ornitz DM (2008) Fibroblast growth factors and Hedgehogs: at the heart of the epicardial signaling center. Trends Genet 24:33–40. doi:10.1016/j.tig.2007.10.007

    Article  CAS  PubMed  Google Scholar 

  28. Pan JY, Zhou SH (2012) The hedgehog signaling pathway, a new therapeutic target for treatment of ischemic heart disease. Pharmazie 67:475–481

    CAS  PubMed  Google Scholar 

  29. Nakajima Y, Imanaka-Yoshida K (2013) New insights into the developmental mechanisms of coronary vessels and epicardium. Int Rev Cell Mol Biol 303:263–317. doi:10.1016/B978-0-12-407697-6.00007-6

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Cao J, Dickson AL, Poss KD (2015) Epicardial regeneration is guided by cardiac outflow tract and Hedgehog signalling. Nature 522:226–230. doi:10.1038/nature14325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lien CL, Harrison MR, Tuan TL, Starnes VA (2012) Heart repair and regeneration: recent insights from zebrafish studies. Wound Repair Regen 20:638–646. doi:10.1111/j.1524-475X.2012.00814.x

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wong KS, Rehn K, Palencia-Desai S et al (2012) Hedgehog signaling is required for differentiation of endocardial progenitors in zebrafish. Dev Biol 361:377–391. doi:10.1016/j.ydbio.2011.11.004

    Article  CAS  PubMed  Google Scholar 

  33. Gianakopoulos PJ, Skerjanc IS (2005) Hedgehog signaling induces cardiomyogenesis in P19 cells. J Biol Chem 280:21022–21028. doi:10.1074/jbc.M502977200

    Article  CAS  PubMed  Google Scholar 

  34. Mackie AR, Klyachko E, Thorne T et al (2012) Sonic hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction. Circ Res 111:312–321. doi:10.1161/CIRCRESAHA.112.266015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bijlsma MF, Spek CA (2010) The Hedgehog morphogen in myocardial ischemia-reperfusion injury. Exp Biol Med 235:447–454. doi:10.1258/ebm.2009.009303

    Article  CAS  Google Scholar 

  36. Agouni A, Mostefai HA, Porro C et al (2007) Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release. FASEB J 21:2735–2741. doi:10.1096/fj.07-8079com

    Article  CAS  PubMed  Google Scholar 

  37. Paulis L, Fauconnier J, Cazorla O et al (2015) Activation of Sonic hedgehog signaling in ventricular cardiomyocytes exerts cardioprotection against ischemia reperfusion injuries. Sci Rep 5:7983. doi:10.1038/srep07983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tongers J, Losordo DW, Landmesser U (2011) Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. Eur Heart J 32:1197–1206. doi:10.1093/eurheartj/ehr018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Przybyt E, Harmsen MC (2013) Mesenchymal stem cells: promising for myocardial regeneration? Curr Stem Cell Res Ther 8:270–277

    Article  CAS  PubMed  Google Scholar 

  40. Williams AR, Hare JM (2011) Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res 109:923–940. doi:10.1161/CIRCRESAHA.111.243147;

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Amakye D, Jagani Z, Dorsch M (2013) Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat Med 19:1410–1422. doi:10.1038/nm.3389

    Article  CAS  PubMed  Google Scholar 

  42. Addis RC, Epstein JA (2013) Induced regeneration – the progress and promise of direct reprogramming for heart repair. Nat Med 19:829–836. doi:10.1038/nm.3225

    Article  CAS  PubMed  Google Scholar 

  43. Birket MJ, Ribeiro MC, Verkerk AO et al (2015) Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol 33:970–979. doi:10.1038/nbt.3271

    Article  CAS  PubMed  Google Scholar 

  44. Hirt MN, Hansen A, Eschenhagen T (2014) Cardiac tissue engineering: state of the art. Circ Res 114:354–367. doi:10.1161/CIRCRESAHA.114.300522

    Article  CAS  PubMed  Google Scholar 

  45. De Smaele E, Ferretti E, Gulino A (2010) Vismodegib, a small-molecule inhibitor of the hedgehog pathway for the treatment of advanced cancers. Curr Opin Investig Drugs 11:707–718

    PubMed  Google Scholar 

  46. Petrova E, Rios-Esteves J, Ouerfelli O, Glickman JF, Resh MD (2013) Inhibitors of Hedgehog acyltransferase block Sonic Hedgehog signaling. Nat Chem Biol 9:247–249. doi:10.1038/nchembio.1184;

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hwang S, Thangapandian S, Lee KW (2013) Molecular dynamics simulations of sonic hedgehog-receptor and inhibitor complexes and their applications for potential anticancer agent discovery. PLOS ONE 8:e68271. doi:10.1371/journal.pone.0068271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schaefer GI, Perez JR, Duvall JR, Stanton BZ, Shamji AF, Schreiber SL (2013) Discovery of small-molecule modulators of the Sonic Hedgehog pathway. J Am Chem Soc 135:9675–9680. doi:10.1021/ja400034k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Johnson JS, Meliton V, Kim WK et al (2011) Novel oxysterols have pro-osteogenic and anti-adipogenic effects in vitro and induce spinal fusion in vivo. J Cell Biochem 112:1673–1684. doi:10.1002/jcb.23082;

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang J, Lu J, Bond MC et al (2010) Identification of select glucocorticoids as smoothened agonists: potential utility for regenerative medicine. Proc Natl Acad Sci USA 107:9323–9328. doi:10.1073/pnas.0910712107;

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Frank-Kamenetsky M, Zhang XM, Bottega S et al (2002) Small-molecule modulators of Hedgehog signaling: identification and characterization of smoothened agonists and antagonists. J Biol 1:10

    Article  PubMed  PubMed Central  Google Scholar 

  52. Liu Y, Liu H, Sauvey C, Yao L, Zarnowska ED, Zhang SC (2013) Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells. Nat Protoc 8:1670–1679. doi:10.1038/nprot.2013.106;

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gorojankina T, Hoch L, Faure H et al (2013) Discovery, molecular and pharmacological characterization of GSA-10, a novel small-molecule positive modulator of smoothened. Mol Pharmacol 83:1020–1029. doi:10.1124/mol.112.084590

    Article  CAS  PubMed  Google Scholar 

  54. Lavine KJ, Kovacs A, Ornitz DM (2008) Hedgehog signaling is critical for maintenance of the adult coronary vasculature in mice. J Clin Invest 118:2404–2414. doi:10.1172/JCI34561

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ueda K, Takano H, Niitsuma Y et al (2010) Sonic hedgehog is a critical mediator of erythropoietin-induced cardiac protection in mice. J Clin Invest 120:2016–2029. doi:10.1172/JCI39896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the natural science foundation of China (NSFC; Project No. 81300092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Zhao or J. Sheng.

Ethics declarations

Conflict of interest

Y. Wang, P. Lu, D. Zhao, and J. Sheng declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lu, P., Zhao, D. et al. Targeting the hedgehog signaling pathway for cardiac repair and regeneration. Herz 42, 662–668 (2017). https://doi.org/10.1007/s00059-016-4500-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-016-4500-y

Keywords

Schlüsselwörter

Navigation