Skip to main content
Log in

Screening first-degree relatives of patients with idiopathic dilated cardiomyopathy

Screening der Verwandten ersten Grades von Patienten mit idiopathischer dilatativer Kardiomyopathie

  • Original articles
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Background

This study evaluated whether subclinical myocardial dysfunction occurs in first-degree relatives of patients with idiopathic dilated cardiomyopathy (IDCM), using strain echocardiographic imaging, before apparent left ventricular (LV) failure is observed.

Patients and methods

The study comprised 77 subjects aged 16–63 years who had first-degree relatives with a previous or new diagnosis of IDCM. LV myocardial deformation parameters of the first-degree relatives with normal LVEF (≥55%) values, as assessed using 2D echocardiography, were evaluated. The findings of the first-degree relatives were compared with an age- and sex-matched control group (n = 86).

Results

No difference in terms of age, gender, and body surface area was detected between first-degree relatives and controls. First-degree relatives of IDCM patients had significantly lower LVEF (62.04 ± 5.8% vs. 65.65 ± 6.3%, p < 0.001) and FS values (39.4 ± 6.6 vs. 41.45 ± 5.5, p = 0.03) compared with the controls. Assessment of LV deformation parameters revealed that LV global longitudinal strain (−17.34 ± 2.19% vs. −19.21 ± 2.16%, p < 0.001) and strain rate (0.94 ± 0.14 s−1 vs. 1.03 ± 0.14 s−1, p < 0.001), radial strain (34.47 ± 9.14% vs 42.79 ± 11.91%, p < 0.001) and strain rate (1.6 ± 0.38 s−1 vs. 1.75 ± 0.29 s−1, p = 0.006), circumferential strain (−6.07 ± 2.83% vs. −18.29 ± 3.39%, p < 0.001) and strain rate (1.09 ± 0.24 s−1 vs. 1.2 ± 0.25 s−1, p = 0.004), and torsion (10.07 ± 5.18o/cm vs. 12.42 ± 5.78o/cm, p = 0.009) were significantly reduced in first-degree relatives compared with controls.

Conclusion

LV deformation parameters are impaired in first-degree relatives of patients with IDCM. Screening of this population using standard 2D echocardiography and strain imaging may provide early detection of those with subclinical myocardial dysfunction.

Zusammenfassung

Hintergrund

In der vorliegenden Studie wurde untersucht, ob bei Verwandten ersten Grades von Patienten mit idiopathischer dilatativer Kardiomyopathie (IDCM) eine subklinische Myokardfunktionsstörung auftritt. Dazu wurde die echokardiographische Deformationsbildgebung („strain imaging“) eingesetzt, bevor eine offensichtliche linkventrikuläre (LV-)Insuffizienz beobachtet wurde.

Patienten und Methoden

An der Studie nahmen 77 Probanden im Alter von 16 bis 63 Jahren teil, die Verwandte ersten Grades mit der früher oder aktuell gestellten Diagnose einer IDCM hatten. Es wurden LV-Myokarddeformationsparameter der Verwandten ersten Grades mit normaler linksventrikulärer Ejektionsfraktion in der 2‑D-Echokardiographie (LVEF ≥55%) untersucht. Die Befunde der Verwandten ersten Grades wurden mit einer nach Alter und Geschlecht entsprechend ausgesuchten Kontrollgruppe verglichen (n = 86).

Ergebnisse

Es wurden keine Unterschiede hinsichtlich Alter, Geschlecht und Körperoberfläche zwischen Verwandten ersten Grades und Kontrollen festgestellt. Verwandte ersten Grades von IDCM-Patienten wiesen signifikant niedrigere Werte für die LVEF (62,04 ± 5,8% vs. 65,65 ± 6,3%; p < 0,001) und die Verkürzungsfraktion (FS, „fractional shortening“; 39,4 ± 6,6 vs. 41,45 ± 5,5; p = 0,03) als die Kontrollen auf. Die Beurteilung der LV-Deformationsparameter ergab, dass die linksventrikuläre longitudinale globale Deformation (−17,34 ± 2,19% vs. −19,21 ± 2,16%; p < 0,001) und Deformationsrate (0,94 ± 0,14 s−1 vs. 1,03 ± 0,14 s−1; p < 0,001), die radiale Deformation (34,47 ± 9,14% vs. 42,79 ± 11,91%; p < 0,001) und Deformationsrate (1,6 ± 0,38 s−1 vs. 1,75 ± 0,29 s−1; p = 0,006), die zirkumferenzielle Deformation (−6,07 ± 2,83% vs. −18,29 ± 3,39%; p < 0,001) und Deformationsrate (1,09 ± 0,24 s−1 vs. 1,2 ± 0,25 s−1; p = 0,004) sowie die Torsion (10,07 ± 5,18o/cm vs. 12,42 ± 5,78o/cm; p = 0,009) bei den Verwandten ersten Grades im Vergleich zu den Kontrollen signifikant vermindert waren.

Schlussfolgerung

Die LV-Deformationsparameter sind bei Verwandten ersten Grades von IDCM-Patienten beeinträchtigt. Das Screening dieser Bevölkerungsgruppe unter Verwendung der Standard-2-D-Echokardiographie und der Deformationsbildgebung könnte die Früherkennung von Personen mit subklinischer Myokardfunktionsstörung ermöglichen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Elliott P, Anderson B, Arbustini E et al (2008) Classification of the cardiomyopathies: a position statement from the European Society of Cardiology working group on myocardial and pericardial diseases. Eur Heart J 29:270–276

    Article  PubMed  Google Scholar 

  2. Fatkin D, Otway R, Richmond Z (2010) Genetics of dilated cardiomyopathy. Heart Fail Clin 6:129–140

    Article  PubMed  Google Scholar 

  3. Michels VV, Moll PP, Miller FA et al (1992) The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N Engl J Med 326:77–82

    Article  CAS  PubMed  Google Scholar 

  4. Hershberger RE, Siegfried JD (2011) Update 2011: clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol 57:1641–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Petretta M, Pirozzi F, Sasso L et al (2011) Review and metaanalysis of the frequency of familial dilated cardiomyopathy. Am J Cardiol 108:1171–1176

    Article  PubMed  Google Scholar 

  6. Fatkin D, members of the CSANZ Cardiac Genetic Diseases Council Writing Group (2011) Guidelines for the diagnosis and management of familial dilated cardiomyopathy. Heart Lung Circ 20:691–693

    Article  PubMed  Google Scholar 

  7. Lakdawala NK, Funke BH, Baxter S et al (2012) Genetic testing for dilated cardiomyopathy in clinical practice. J Card Fail 18:296–303

    Article  PubMed  PubMed Central  Google Scholar 

  8. Elliott P, Charron P, Blanes JR et al (2015) European Cardiomyopathy Pilot Registry: EURObservational Research Programme of the European Society of Cardiology. Euro Heart J. doi:10.1093/eurheartj/ehv497

    Google Scholar 

  9. Ackerman MJ, Priori SG, Willems S et al (2011) HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace 13:1077–1109

    Article  PubMed  Google Scholar 

  10. Campbell N, Sinagra G, Jones KL et al (2013) Whole Exome sequencing identifies a Troponin T mutation hot spot in familial dilated cardiomyopathy. PLOS ONE 8:e78104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yuda S, Fang ZY, Marwick TH (2003) Association of severe coronary stenosis with subclinical left ventricular dysfunction in the absence of infarction. J Am Soc Echocardiogr 16:1163–1170

    Article  PubMed  Google Scholar 

  12. Wang Q, Sun QW, Wu D et al (2015) Early detection of regional and global left ventricular myocardial function using strain and strain-rate imaging in patients with metabolic syndrome. Chin Med J (Engl) 12:226–232

    Google Scholar 

  13. Richardson P, McKenna W, Bristow M et al (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation 93:841–842

    Article  CAS  PubMed  Google Scholar 

  14. Kushner JD, Nauman D, Burgess D et al (2006) Clinical characteristics of 304 kindreds evaluated for familial dilated cardiomyopathy. J Card Fail 12:422–429

    Article  PubMed  Google Scholar 

  15. Serio A, Narula N, Kodama T et al (2012) Familial dilated cardiomyopathy. Clinical and genetic characteristics. Herz 37:822–829

    Article  CAS  PubMed  Google Scholar 

  16. Mestroni L, Rocco C, Gregori D et al (1999) Familial dilated cardiomyopathy: evidence for genetic and phenotypic heterogeneity. Heart Muscle Disease Study Group. J Am Coll Cardiol 34:181–190

    Article  CAS  PubMed  Google Scholar 

  17. Lang RM, Bierig M, Devereux RB et al (2006) Recommendations for chamber quantification. Eur J Echocardiogr 7:79–108

    Article  PubMed  Google Scholar 

  18. Burkett EL, Hershberger RE (2005) Clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol 45:969–981

    Article  CAS  PubMed  Google Scholar 

  19. Hershberger RE (2008) Cardiovascular genetic medicine: evolving concepts, rationale, and implementation. J Cardiovasc Transl Res 1:137–143

    Article  PubMed  Google Scholar 

  20. Baig MK, Goldman JH, Caforio AL et al (1998) Familial dilated cardiomyopathy: cardiac abnormalities are common in asymptomatic relatives and may represent early disease. J Am Coll Cardiol 31:195–201

    Article  CAS  PubMed  Google Scholar 

  21. Michels VV, Olson TM, Miller FA et al (2013) Frequency of development of idiopathic dilated cardiomyopathy among relatives of patients with idiopathic dilated cardiomyopathy. Am J Cardiol 91:1389–1392

    Article  Google Scholar 

  22. Lakdawala NK, Thune JJ, Colan SD et al (2012) Subtle abnormalities in contractile function are an early manifestation of sarcomere mutations in dilated cardiomyopathy. Circ Cardiovasc Genet 5:503–510

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hersberger RE, Hedges DJ, Morales A (2013) Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol 10:531–547

    Article  Google Scholar 

  24. Caforio AL, Keeling PJ, Zachara E et al (1994) Evidence from family studies for autoimmunity in dilated cardiomyopathy. Lancet 344:773–777

    Article  CAS  PubMed  Google Scholar 

  25. Yingchoncharoen T, Agarwal S, Popović ZB et al (2013) Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr 26:185–191

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Tuluce M.D..

Ethics declarations

Conflict of interest

M. Sefa Okten, K. Tuluce, S. Yakar Tuluce, S. Kilic, H. Soner Kemal, A. Sayin, O. Vuran, B. Yagmur, I. Mutlu, E. Simsek, C. Soydas Cinar, and C. Gurgun declare that they have no competing interests.

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Additional information

The results of this study were presented in part at the American College of Cardiology Scientific Sessions, 2014, Washington, DC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sefa Okten, M., Tuluce, K., Yakar Tuluce, S. et al. Screening first-degree relatives of patients with idiopathic dilated cardiomyopathy. Herz 42, 669–676 (2017). https://doi.org/10.1007/s00059-016-4498-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-016-4498-1

Keywords

Schlüsselwörter

Navigation