Skip to main content
Log in

Heme oxygenase 1 induction protects myocardiac cells against hypoxia/reoxygenation-induced apoptosis

The role of JNK/c-Jun/Caspase-3 inhibition and Akt signaling enhancement

Hämoxygenase-1-Induktion schützt Myokardzellen gegen durch Hypoxie/Reoxygenierung induzierte Apoptose

Bedeutung der JNK/c-Jun/Caspase-3-Inhibition und Akt-Signalverstärkung

  • Original articles
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Background

Although recent studies have found that heme oxygenase (HO)-1 plays an important role in myocardiac cell survival, the precise mechanisms occurring during hypoxia/reoxygenation (H/R) injury remain unclear. Therefore, the aim of this study was to investigate the cytoprotective mechanisms of HO-1 against H/R-induced myocardiac cell apoptosis and to explore whether the Akt signaling pathway contributed to the protection provided by HO-1.

Methods

Cobalt protoporphyrin (CoPP, a pharmacologic inducer of HO-1) was employed to induce the over-expression of HO-1 before H/R in H9c2 cells. Hoechst staining and flow cytometry were used to examine the extent of apoptosis. Furthermore, the effect of HO-1 on Akt, JNK, and the expression of apoptosis-related proteins (c-JUN and Caspase-3) was determined by Western blotting.

Results

The results showed that over-expressed HO-1 could significantly protect myocardiac cells against H/R-induced apoptosis in H9c2 cells. Furthermore, the protein expression of p‑Akt increased and of p‑JNK decreased in the H/R injury H9c2 cells when treated with CoPP. The apoptosis-related proteins c‑Jun and caspase-3 were both inhibited by over-expression of HO-1. At the same time, retreatment with zinc protoporphyrin (ZnPP, a specific inhibitor of HO-1 enzymatic activity) or LY294002 (an inhibitor of Akt1) reversed the HO-1-induced changes.

Conclusion

In summary, our results suggest that HO-1 can decrease H/R-induced myocardiac cell apoptosis; the mechanism may be related to the activation of the Akt signaling pathway and, furthermore, to the inhibition of the JNK/c-Jun/caspase-3 signaling pathway.

Zusammenfassung

Hintergrund

Aktuellen Studien zufolge spielt die Hämoxygenase(HO)-1 zwar eine wichtige Rolle für das Überleben von Myokardzellen, aber die genauen Abläufe bei einer Schädigung durch Hypoxie/Reoxygenierung (H/R) sind nicht geklärt. Daher war es Ziel der vorliegenden Studie, die zytoprotektiven Wirkungen von HO-1 gegen H/R-induzierte Myokardzellapoptose zu untersuchen und herauszufinden, ob der Akt-Signalweg zum HO-1-vermittelten Schutz beiträgt.

Methoden

Kobaltprotoprophyrin (CoPP, ein pharmakologischer Induktor von HO-1) wurde zur Induktion der Überexpression von HO-1 vor H/R in H9c2-Zellen eingesetzt. Mittels Hoechst-Färbung und Durchflusszytometrie wurde das Ausmaß der Apoptose ermittelt. Außerdem wurde die Wirkung von HO-1 auf Akt, JNK und die Expression von Apoptoseproteinen (c-JUN und Caspase-3) mit dem Western-Blot-Verfahren untersucht.

Ergebnisse

Die Ergebnisse zeigten, dass überexprimierte HO-1 in signifikanter Weise Myokardzellen gegen H/R-induzierte Apoptose bei H9c2-Zellen schützen konnte. Darüber hinaus kam es bei H9c2-Zellen mit H/R-Schädigung zur Zunahme der Proteinexpression von p‑Akt und zur Abnahme der Proteinexpression von p‑JNK, wenn sie mit CoPP behandelt wurden. Die Apoptoseproteine c‑Jun und Caspase-3 wurden beide durch Überexpression von HO-1 inhibiert. Gleichzeitig wurden die HO-1-induzierten Veränderungen durch Behandlung mit Zinkprotoporphyrin (ZnPP, ein spezifischer Inhibitor der HO-1-Enzymaktivität) oder LY294002 (ein Inhibitor von Akt1) aufgehoben.

Schlussfolgerung

Zusammenfassend bedeuten die hier vorliegenden Ergebnisse, dass HO-1 die H/R-induzierte Myokardzellapopotose vermindern kann und dieser Vorgang möglicherweise mit der Aktivierung des Akt-Signalwegs sowie außerdem mit der Inhibition des JNK/c-Jun/Caspase-3-Signalwegs in Zusammenhang steht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schachinger V, Zeiher AM (2005) Coronary microcirculation. Pathophysiology, clinical relevance, and importance for regenerative therapy after myocardial infarction. Herz 30:641–650

    Article  PubMed  Google Scholar 

  2. Janosi RA, Bose D, Konorza T et al (2011) Malperfusion in aortic dissection: diagnostic problems and therapeutic procedures. Herz 36:531–538

    Article  CAS  PubMed  Google Scholar 

  3. Felgendreher R, Cuneo A, Hochreuther S et al (2009) Complication of a complex heart failure: perforation of a sinus Valsalva [corrected] aneurysm. Herz 34:242–246

    Article  PubMed  Google Scholar 

  4. Zhang Y, Ren J (2014) Targeting autophagy for the therapeutic application of histone deacetylase inhibitors in ischemia/reperfusion heart injury. Circulation 129:1088–1091

    Article  PubMed  Google Scholar 

  5. Yu P, Zhang J, Yu S et al (2015) Protective effect of Sevoflurane postconditioning against cardiac ischemia/reperfusion injury via ameliorating mitochondrial impairment, oxidative stress and rescuing autophagic clearance. PLoS ONE 10:e0134666

    Article  PubMed  PubMed Central  Google Scholar 

  6. Skyschally A, Schulz R, Heusch G (2008) Pathophysiology of myocardial infarction: protection by ischemic pre- and postconditioning. Herz 33:88–100

    Article  PubMed  Google Scholar 

  7. Schipke JD, Kerendi F, Gams E et al (2006) Postconditioning: a brief review. Herz 31:600–606

    Article  PubMed  Google Scholar 

  8. Maines MD (1988) Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J 2:2557–2568

    CAS  PubMed  Google Scholar 

  9. Grosser N, Schroder H (2004) Therapy with NO donors-antiatherogenic and antioxidant actions. Herz 29:116–122

    Article  PubMed  Google Scholar 

  10. Lundvig DM, Immenschuh S, Wagener FA (2012) Heme oxygenase, inflammation, and fibrosis: the good, the bad, and the ugly? Front Pharmacol 3:81

    Article  PubMed  PubMed Central  Google Scholar 

  11. Alcaraz MJ, Fernandez P, Guillen MI (2003) Anti-inflammatory actions of the heme oxygenase-1 pathway. Curr Pharm Des 9:2541–2551

    Article  CAS  PubMed  Google Scholar 

  12. Yu H, Shi L, Zhao S et al (2015) Triptolide attenuates myocardial ischemia/reperfusion injuries in rats by inducing the activation of Nrf2/HO-1 defense pathway. Cardiovasc Toxicol, doi: 10.1007/s12012-015-9342-y

    Google Scholar 

  13. Park HS, You GE, Yang KH et al (2015) Role of AKT and ERK pathways in controlling sensitivity to ionizing radiation and adaptive response induced by low-dose radiation in human immune cells. Eur J Cell Biol 94(12):653–660

    Article  CAS  PubMed  Google Scholar 

  14. Hemmings BA, Restuccia DF (2012) PI3 K-PKB/Akt pathway. Cold Spring Harb Perspect Biol 4:a011189

    Article  PubMed  PubMed Central  Google Scholar 

  15. Park ES, Kang DH, Yang MK et al (2014) Cordycepin, 3’-deoxyadenosine, prevents rat hearts from ischemia/reperfusion injury via activation of Akt/GSK-3beta/p70S6 K signaling pathway and HO-1 expression. Cardiovasc Toxicol 14:1–9

    Article  CAS  PubMed  Google Scholar 

  16. Zhao P, Li F, Gao W et al (2015) Angiotensin1–7 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress by preventing ROS-associated mitochondrial dysfunction and activating the Akt signaling pathway. Acta Histochem 117(8):803–810

    Article  CAS  PubMed  Google Scholar 

  17. Sun J, Sun G, Meng X et al (2013) Ginsenoside RK3 Prevents Hypoxia-Reoxygenation Induced Apoptosis in H9c2 Cardiomyocytes via AKT and MAPK Pathway. Evid Based Complement Alternat Med 2013:690190

    PubMed  PubMed Central  Google Scholar 

  18. Song JQ, Teng X, Cai Y et al (2009) Activation of Akt/GSK-3beta signaling pathway is involved in intermedin(1–53) protection against myocardial apoptosis induced by ischemia/reperfusion. Apoptosis 14:1299–1307

    Article  CAS  PubMed  Google Scholar 

  19. Wu QQ, Zong J, Gao L et al (2014) Sulforaphane protects H9c2 cardiomyocytes from angiotensin II-induced hypertrophy. Herz 39:390–396

    Article  PubMed  Google Scholar 

  20. Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cao J, Chen J, Xie L et al (2015) Protective properties of sesamin against fluoride-induced oxidative stress and apoptosis in kidney of carp (Cyprinus carpio) via JNK signaling pathway. Aquat Toxicol 167:180–190

    Article  CAS  PubMed  Google Scholar 

  22. Manning AM, Davis RJ (2003) Targeting JNK for therapeutic benefit: from junk to gold? Nat Rev Drug Discov 2:554–565

    Article  CAS  PubMed  Google Scholar 

  23. Martin JH, Mohit AA, Miller CA (1996) Developmental expression in the mouse nervous system of the p493F12 SAP kinase. Brain Res Mol Brain Res 35:47–57

    Article  CAS  PubMed  Google Scholar 

  24. Kuan CY, Yang DD, Samanta Roy DR et al (1999) The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22:667–676

    Article  CAS  PubMed  Google Scholar 

  25. Gupta S, Barrett T, Whitmarsh AJ et al (1996) Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15:2760–2770

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Irving EA, Bamford M (2002) Role of mitogen- and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab 22:631–647

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Liao H, Zhong S et al (2015) Effect of N‑n-butyl haloperidol iodide on ROS/JNK/Egr-1 signaling in H9c2 cells after hypoxia/reoxygenation. Sci Rep 5:11809

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schipke JD, Nickel F, Gams E et al (2004) Protective effects of a delta-opioid-receptor agonist and an oxygen radical scavenger on postischemic hearts. Herz 29:331–340

    Article  PubMed  Google Scholar 

  29. Wang B, Zhong S, Zheng F et al (2015) N‑n-butyl haloperidol iodide protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy. Oncotarget 6(28):24709-24721

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lakkisto P, Siren JM, Kyto V et al (2011) Heme oxygenase-1 induction protects the heart and modulates cellular and extracellular remodelling after myocardial infarction in rats. Exp Biol Med (Maywood) 236:1437–1448

    Article  CAS  Google Scholar 

  31. Wen XR, Fu YY, Liu HZ et al (2015) Neuroprotection of Sevoflurane against ischemia/reperfusion-induced brain injury through inhibiting JNK3/Caspase-3 by enhancing akt signaling pathway. Mol Neurobiol 53:1661–1671

    Article  PubMed  Google Scholar 

  32. Marte BM, Downward J (1997) PKB/Akt: connecting phosphoinositide 3‑kinase to cell survival and beyond. Trends Biochem Sci 22:355–358

    Article  CAS  PubMed  Google Scholar 

  33. Amaravadi R, Thompson CB (2005) The survival kinases Akt and Pim as potential pharmacological targets. J Clin Invest 115:2618–2624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen C, Huo R, Tong Y et al (2011) Systemic heme oxygenase-1 transgenic overexpression aggravates pressure overload-induced cardiac hypertrophy in mice. Cell Physiol Biochem 28:25–32

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81500977).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Li.

Ethics declarations

Conflict of interest

C. Li, C. Zhang, T. Wang, J. Xuan, C. Su, and Y. Wang state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or animals.

Additional information

The authors contributed equally to this work. In detail, C.L. designed the study. T.W., C.Z., J.X., and Y.W. performed the experiments and collected the data. C.L. and T.W. analyzed and interpreted the experimental data. C.L. and T.W. prepared the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, C., Wang, T. et al. Heme oxygenase 1 induction protects myocardiac cells against hypoxia/reoxygenation-induced apoptosis. Herz 41, 715–724 (2016). https://doi.org/10.1007/s00059-016-4424-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-016-4424-6

Keywords

Schlüsselwörter

Navigation