Skip to main content
Log in

Aortenklappenstenose: Computertomographie vor Transkatheteraortenklappenimplantation (TAVI)

Wie erreicht man eine Verbesserung der Ergebnisse?

Aortic valve stenosis: computed tomography prior to transcatheter aortic valve implantation (TAVI)

How can the outcome be improved?

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Die Computertomographie (CT) spielt eine wesentliche und zunehmend wichtige Rolle in der präinterventionellen Diagnostik bei Patienten, die für eine kathetergestützte Aortenklappenimplantation (TAVI) vorgesehen sind. Die CT-Bildgebung (sie muss zwingend mit Kontrastmittel durchgeführt werden) ermöglicht eine umfassende Beurteilung sowohl des Zugangsweges als auch der Geometrie und der Dimensionen von Aortenwurzel und Aortenklappe. Um zu entscheiden, ob die Klappenimplantation transfemoral erfolgen kann, müssen der minimale Gefäßdurchmesser, die Tortuosität und die Kalzifizierung der Iliakal- und Femoralgefäße beurteilt werden. Die Größenvermessung des Aortenannulus dient der Ermittlung der zu implantierenden Prothesengröße – dabei ist die CT der 2-dimensionalen Echokardiographie eindeutig überlegen. Zudem gestattet die CT eine genaue Bestimmung des Abstands zwischen Koronarostien und Aortenannulus, der Tiefe der Sinus valsalvae und der Dimensionen der Aorta ascendens – je nach eingesetztem Klappentyp müssen hierbei besondere Grenzwerte beachtet werden. Schließlich ermöglicht die CT die Bestimmung geeigneter Angulationen, um während der Implantation mittels Fluoroskopie eine exakt orthogonale Projektion der Aortenklappenebene zu erreichen. Dies führt zu einer Reduktion der bei der Implantation notwendigen Kontrastmittelmenge. In den meisten Zentren wird die CT des Herzens und der Gefäße als Routineverfahren bei allen Patienten eingesetzt, die für den kathetergestützten Aortenklappenersatz vorgesehen sind, und liefert umfassende Informationen, welche die prozedurale Qualität erheblich verbessern.

Abstract

Computed tomography (CT) plays an important role in the preinterventional work-up of patients referred for transcatheter aortic valve implantation (TAVI). Contrast-enhanced CT allows a comprehensive examination with evaluation of both the vascular access route as well as aortic valve and aortic root geometry. Analysis of the minimum luminal vessel diameter, tortuosity and vascular calcification are important to determine the ability to perform the procedure via a transfemoral access. The size of the aortic annulus can be accurately measured by CT to aid selection of the appropriate prosthesis and the use of CT for prosthesis sizing has been associated with a decreased incidence of paravalvular leakage as compared to 2-dimensional echocardiography. In addition CT permits accurate assessment of aortic root anatomy, distance between coronary ostia and the annulus plane as well as the dimensions of the ascending aorta. Furthermore, suitable fluoroscopic projections that permit an exact orthogonal visualization of the aortic annulus plane by fluoroscopy during the procedure can be extracted from the CT data set. In summary, CT permits comprehensive imaging in TAVI candidates and optimizes procedural outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11

Literatur

  1. Kuck KH, Eggebrecht H, Figulla HR et al (2015) Qualitätskriterien zur Durchführung der transvaskulären Aortenklappenimplantation (TAVI). Positionspapier der Deutschen Gesellschaft für Kardiologie. Kardiologe 9:11–26

    Article  Google Scholar 

  2. Vahanian A, Alfieri O, Andreotti F et al (2012) Guidelines on the management of valvular heart disease (version 2012). Eur Heart J 33:2451–2496

    Article  PubMed  Google Scholar 

  3. Holmes DR Jr, Mack MJ, Kaul S et al (2012) 2012 ACCF/AATS/SCAI/STS expert consensus document on transcatheter aortic valve replacement: developed in collabration with the American Heart Association, American Society of Echocardiography, European Association for Cardio-Thoracic Surgery, Heart Failure Society of America, Mended Hearts, Society of Cardiovascular Anesthesiologists, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. J Thorac Cardiovasc Surg 144:e29–e84

    Article  PubMed  Google Scholar 

  4. Cribier A, Eltchaninoff H, Bash A, Borenstein N (2002) Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106:3006–3008

    Article  PubMed  Google Scholar 

  5. Van Belle E, Juthier F, Susen S et al (2014) Postprocedural aortic regurgitation in balloon-expandable and self-expandable transcatheter aortic valve replacement procedures: analysis of predictors and impact on long-term mortality: insights from the FRANCE2 registry. Circulation 129:1415–1427

    Article  Google Scholar 

  6. Achenbach S, Delgado V, Hausleiter J et al (2012) SCCT expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR). J Cardiovasc Comput Tomogr 6:366–380

    Article  PubMed  Google Scholar 

  7. Wuest W, Anders K, Schuhbaeck A et al (2012) Dual source multidetector CT-angiography before Transcatheter Aortic Valve Implantation (TAVI) using a high-pitch spiral acquisition mode. Eur Radiol 22:51–78

    Article  CAS  PubMed  Google Scholar 

  8. Toggweiler S, Gurvitch R, Leipsic J et al (2012) Percutaneous aortic valve replacement: vascular outcomes with a fully percutaneous procedure. J Am Coll Cardiol 59:113–118

    Article  PubMed  Google Scholar 

  9. Ribeiro HB, Webb JG, Makkar RR et al (2013) Predictive factors, management, and clinical outcomes of coronary obstruction following transcatheter aortic valve implantation: insights from a large multicenter registry. J Am Coll Cardiol 62:1552–1562

    Article  PubMed  Google Scholar 

  10. Arnold M, Achenbach S, Pfeiffer I et al (2012) A method to determine suitable fluoroscopic projections for transcatheter aortic valve implantation by computed tomography. J Cardiovasc Comput Tomogr 6:422–428

    Article  PubMed  Google Scholar 

  11. Gurvitch R, Wood DA, Leipsic J et al (2010) Multislice computed tomography for prediction of optimal angiographic deployment projections during transcatheter aortic valve implantation. JACC Cardiovasc Interv 3:1157–1165

    Article  PubMed  Google Scholar 

  12. Kurra V, Kapadia SR, Tuzcu EM et al (2010) Pre-procedural imaging of aortic root orientation and dimensions: comparison between X-ray angiographic planar imaging and 3-dimensional multidetector row computed tomography. JACC Cardiovasc Interv 3:105–113

    Article  PubMed  Google Scholar 

  13. Samim M, Stella PR, Agostoni P et al (2013) Automated 3D analysis of pre-procedural MDCT to predict annulus plane angulation and C-arm positioning: benefit on procedural outcome in patients referred for TAVR. JACC Cardiovasc Imaging 6:238–248

    Article  PubMed  Google Scholar 

  14. Barbanti M, Yang TH, Rodès Cabau J et al (2013) Anatomical and procedural features associated with aortic root rupture during balloon-expandable transcatheter aortic valve replacement. Circulation 128:244–253

    Article  PubMed  Google Scholar 

  15. Willson AB, Webb JG, Labounty TM et al (2012) 3-dimensional aortic annular assessment by multidetector computed tomography predicts moderate or severe paravalvular regurgitation after transcatheter aortic valve replacement: a multicenter retrospective analysis. J Am Coll Cardiol 59:1287–1294

    Article  PubMed  Google Scholar 

  16. Masri A, Schoenhagen P, Svensson L et al (2014) Dynamic characterization of aortic annulus geometry and morphology with multimodality imaging: predictive value for aortic regurgitation after transcatheter aortic valve replacement. J Thorac Cardiovasc Surg 147:1847–1854

    Article  PubMed  Google Scholar 

  17. Pontone G, Andreini D, Bartorelli AL et al (2012) Aortic annulus area assessment by multidetector computed tomography for predicting paravalvular regurgitation in patients undergoing balloon-expandable transcatheter aortic valve implantation: a comparison with transthoracic and transesophageal echocardiography. Am Heart J 164:576–584

    Article  PubMed  Google Scholar 

  18. Hansson NC, Thuesen L, Hjortdal VE et al (2013) Three-dimensional multidetector computed tomography versus conventional 2-dimensional transesophageal echocardiography for annular sizing in transcatheter aortic valve replacement: influence on postprocedural paravalvular aortic regurgitation. Catheter Cardiovasc Interv 82:977–986

    Article  PubMed  Google Scholar 

  19. Jilaihawi H, Doctor N, Kashif M et al (2013) Aortic annular sizing for transcatheter aortic valve replacement using cross-sectional 3-dimensional transesophageal echocardiography. J Am Coll Cardiol 61:908–916

    Article  PubMed  Google Scholar 

  20. Binder RK, Webb JG, Willson AB et al (2013) The impact of integration of a multidetector computed tomography annulus area sizing algorithm on outcomes of transcatheter aortic valve replacement: a prospective, multicenter, controlled trial. J Am Coll Cardiol 62:431–438

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. M. Hell, S. Achenbach und M. Arnold geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Achenbach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hell, M., Achenbach, S. & Arnold, M. Aortenklappenstenose: Computertomographie vor Transkatheteraortenklappenimplantation (TAVI). Herz 40, 576–582 (2015). https://doi.org/10.1007/s00059-015-4232-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-015-4232-4

Schlüsselwörter

Keywords

Navigation