Advertisement

Herz

, Volume 40, Issue 3, pp 361–368 | Cite as

Prävention kardiovaskulärer Erkrankungen durch Sport und körperliche Aktivität

Eine Frage der Intensität?
  • S. Wernhart
  • M. Dinic
  • A. Pressler
  • M. HalleEmail author
Schwerpunkt

Zusammenfassung

Die koronare Herzkrankheit ist die häufigste Todesursache weltweit. Körperliche Inaktivität und eingeschränkte körperliche Leistungsfähigkeit sind für 9% der Fälle einer verfrühten Mortalität verantwortlich. Im Gegenzug führt regelmäßige körperliche Aktivität zu einer Steigerung der kardiopulmonalen Fitness, und beides wirkt sich positiv auf die kardiovaskuläre Morbidität und Mortalität aus, indem nicht wie bei medikamentöser Therapie einzelne Mechanismen angesprochen, sondern vielmehr multiple pathophysiologische Prozesse gleichzeitig günstig beeinflusst werden. So verbessert moderates Training signifikant das kardiovaskuläre Risikoprofil durch Blutdrucksenkung, Erhöhung der Insulinsensitivität, Verbesserung des Lipidstoffwechsels, Reduktion chronisch-inflammatorischer Konstellationen und Gewichtsreduktion. Dies ist abhängig von der Intensität der körperlichen Belastung. Studien der letzten Jahre zeigen, dass gerade höhere Intensitäten größere positive Effekte induzieren können als moderate Belastungen, die derzeit noch primär empfohlen werden. Dies muss allerdings vor dem Hintergrund bewertet werden, dass Belastungen mit hohem Umfang wie Marathontraining möglicherweise auch negative Effekte induzieren können. So zeigen sich bei diesen Sportlern in kleineren Studien eine echokardiographische Erweiterung des rechten Herzens und eine Dysfunktion mit erhöhter Fibrosierung im Tiermodell und einer unerwartet hohen Koronarsklerose. Inwieweit dies bei Gesunden langfristig zu einer erhöhten Inzidenz von Vorhofflimmern oder kardiovaskulären Ereignissen beiträgt, wird derzeit noch kontrovers diskutiert.

Schlüsselwörter

Körperliche Aktivität Trainingsintensität Fitness Kardiovaskuläre Morbidität Kardiovaskuläre Mortalität 

Prevention of cardiovascular diseases through sport and physical activity

A question of intensity?

Abstract

Coronary artery disease is the leading cause of death worldwide. A sedentary lifestyle accounts for 9% of premature mortality and creates a substantial health economic burden. Measurement of physical activity in daily practice refers to metabolic equivalent tasks and assessment of cardiopulmonary fitness to measurements of peak oxygen uptake during ergometry, which can be used to classify an individual’s physical activity and maximum exercise capacity. Physical activity is a multifunctional intervention tool in prevention, which exerts its effects on multiple biochemical pathways, in contrast to conventional drug therapy. These changes reduce cardiovascular morbidity and mortality. Moderate physical exercise reduces blood pressure, improves insulin sensitivity and dyslipidemia, improves body composition and enhances weight reduction. Exercise of higher intensity seems to have superior effects compared to moderate intensity training; however, the training volume also seems to be important, as negative effects of long-term intensive training have been reported, e.g. atrial fibrillation or coronary sclerosis. Overall, exercise training has a major role in primary prevention of cardiovascular disease but seems to have a maximum threshold for benefit, which may be exceeded by some individuals.

Keywords

Physical activity Exercise intensity Fitness Cardiovascular morbidity Cardiovascular mortality 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt. S. Wernhart, M. Dinic, A. Pressler und M. Halle geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Lozano R, Naghavi M, Foreman K et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2095–2128CrossRefPubMedGoogle Scholar
  2. 2.
    Lee DC, Pate RR, Lavie CJ et al (2014) Leisure-time running reduces all-cause and cardiovascular mortality risk. J Am Coll Cardiol 64(5):472–481CrossRefPubMedGoogle Scholar
  3. 3.
    Lavie CJ, McAuley PA, Church TS et al (2014) Obesity and cardiovascular diseases: implications regarding fitness, fatness, and severity in the obesity paradox. J Am Coll Cardiol 63(14):1345–1354CrossRefPubMedGoogle Scholar
  4. 4.
    Khan KM, Thompson AM, Blair SN et al (2012) Sport and exercise as contributors to the health of nations. Lancet 380(9836):59–64CrossRefPubMedGoogle Scholar
  5. 5.
    Sui X, Hooker SP, Lee IM et al (2008) A prospective study of cardiorespiratory fitness and risk of type 2 diabetes in women. Diabetes Care 31(3):550–555CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Unick JL, Beavers D, Jakicic JM et al (2011) Effectiveness of lifestyle interventions for individuals with severe obesity and type 2 diabetes: results from the look AHEAD trial. Diabetes Care 34(10):2152–2157CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Oldridge NB (2008) Economic burden of physical inactivity: healthcare costs associated with cardiovascular disease. Eur J Cardiovasc Prev Rehabil 15(2):130–139CrossRefPubMedGoogle Scholar
  8. 8.
    Lee IM, Shiroma EJ, Lobelo F et al (2012) Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 380(9838):219–229CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Sattelmair J, Pertman J, Ding EL et al (2011) Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation 124(7):789–795CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Berry JD, Willis B, Gupta S et al (2011) Lifetime risks for cardiovascular disease mortality by cardiorespiratory fitness levels measured at ages 45, 55, and 65 years in men. The Cooper Center Longitudinal Study. J Am Coll Cardiol 57(15):1604–1610CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Gupta S, Rohatgi A, Ayers CR et al (2011) Cardiorespiratory fitness and classification of risk of cardiovascular disease mortality. Circulation 123(13):1377–1383CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Blair SN, Kohl HW III, Paffenbarger RS Jr et al (1989) Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA 262(17):2395–2401CrossRefPubMedGoogle Scholar
  13. 13.
    Myers J, Prakash M, Froelicher V et al (2002) Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 346(11):793–801CrossRefPubMedGoogle Scholar
  14. 14.
    Schuler G, Adams V, Goto Y (2013) Role of exercise in the prevention of cardiovascular disease: results, mechanisms, and new perspectives. Eur Heart J 34(24):1790–1799CrossRefPubMedGoogle Scholar
  15. 15.
    Laursen AH, Kristiansen OP, Marott JL et al (2012) Intensity versus duration of physical activity: implications for the metabolic syndrome. A prospective cohort study. BMJ Open 2(5)Google Scholar
  16. 16.
    Petersen CB, Gronbaek M, Helge JW et al (2012) Changes in physical activity in leisure time and the risk of myocardial infarction, ischemic heart disease, and all-cause mortality. Eur J Epidemiol 27(2):91–99CrossRefPubMedGoogle Scholar
  17. 17.
    Schnohr P, Marott JL, Jensen JS, Jensen GB (2012) Intensity versus duration of cycling, impact on all-cause and coronary heart disease mortality: the Copenhagen City Heart Study. Eur J Prev Cardiol 19(1):73–80CrossRefPubMedGoogle Scholar
  18. 18.
    Wen CP, Wai JP, Tsai MK et al (2011) Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet 378(9798):1244–1253CrossRefPubMedGoogle Scholar
  19. 19.
    Hahn V, Halle M, Schmidt-Trucksass A et al (2009) Physical activity and the metabolic syndrome in elderly German men and women: results from the population-based KORA survey. Diabetes Care 32(3):511–513CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Dohm GL (2002) Invited review: regulation of skeletal muscle GLUT-4 expression by exercise. J Appl Physiol 93(2):782–787CrossRefPubMedGoogle Scholar
  21. 21.
    Duncan GE, Perri MG, Theriaque DW et al (2003) Exercise training, without weight loss, increases insulin sensitivity and postheparin plasma lipase activity in previously sedentary adults. Diabetes Care 26(3):557–562CrossRefPubMedGoogle Scholar
  22. 22.
    Steppan J, Sikka G, Jandu S et al (2014) Exercise, vascular stiffness, and tissue transglutaminase. J Am Heart Assoc 3(2):e000599CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Adams V, Besler C, Fischer T et al (2013) Exercise training in patients with chronic heart failure promotes restoration of high-density lipoprotein functional properties. Circ Res 113(12):1345–1355CrossRefPubMedGoogle Scholar
  24. 24.
    Weber M, Baker MB, Moore JP, Searles CD (2010) MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun 393(4):643–648CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Volaklis KA, Tokmakidis SP, Halle M (2013) Acute and chronic effects of exercise on circulating endothelial progenitor cells in healthy and diseased patients. Clin Res Cardiol 102(4):249–257CrossRefPubMedGoogle Scholar
  26. 26.
    Laufs U, Urhausen A, Werner N et al (2005) Running exercise of different duration and intensity: effect on endothelial progenitor cells in healthy subjects. Eur J Cardiovasc Prev Rehabil 12(4):407–414CrossRefPubMedGoogle Scholar
  27. 27.
    Edelmann F, Gelbrich G, Dungen HD et al (2011) Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: results of the Ex-DHF (Exercise training in Diastolic Heart Failure) pilot study. J Am Coll Cardiol 58(17):1780–1791CrossRefPubMedGoogle Scholar
  28. 28.
    Stone NJ, Robinson JG, Lichtenstein AH et al (2014) 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63(25 Pt B):2889–2934CrossRefPubMedGoogle Scholar
  29. 29.
    Eckel RH, Jakicic JM, Ard JD et al (2014) 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63(25 Pt B):2960–2984CrossRefPubMedGoogle Scholar
  30. 30.
    Vanhees L, Geladas N, Hansen D et al (2012) Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular risk factors: recommendations from the EACPR. Part II. Eur J Prev Cardiol 19(5):1005–1033CrossRefPubMedGoogle Scholar
  31. 31.
    Cornelissen VA, Smart NA (2013) Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc 2(1):e004473CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Church TS, Kampert JB, Gibbons LW et al (2001) Usefulness of cardiorespiratory fitness as a predictor of all-cause and cardiovascular disease mortality in men with systemic hypertension. Am J Cardiol 88(6):651–656CrossRefPubMedGoogle Scholar
  33. 33.
    Molmen-Hansen HE, Stolen T, Tjonna AE et al (2012) Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. Eur J Prev Cardiol 19(2):151–160CrossRefPubMedGoogle Scholar
  34. 34.
    Lindström J, Louheranta A, Mannelin M et al (2003) The Finnish Diabetes Prevention Study (DPS): Lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care 26(12):3230–3236CrossRefPubMedGoogle Scholar
  35. 35.
    Knowler WC, Barrett-Connor E, Fowler SE et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346(6):393–403CrossRefPubMedGoogle Scholar
  36. 36.
    Lindström J, Ilanne-Parikka P, Peltonen M et al (2006) Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet 368(9548):1673–1679CrossRefPubMedGoogle Scholar
  37. 37.
    Tuomilehto J, Lindström J, Eriksson JG et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344(18):1343–1350CrossRefPubMedGoogle Scholar
  38. 38.
    Lindström J, Peltonen M, Eriksson JG et al (2013) Improved lifestyle and decreased diabetes risk over 13 years: long-term follow-up of the randomised Finnish Diabetes Prevention Study (DPS). Diabetologia 56(2):284–293CrossRefPubMedGoogle Scholar
  39. 39.
    Tjonna AE, Lee SJ, Rognmo O et al (2008) Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation 118(4):346–354CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Karstoft K, Winding K, Knudsen SH et al (2013) The effects of free-living interval-walking training on glycemic control, body composition, and physical fitness in type 2 diabetes patients: a randomized, controlled trial. Diabetes Care 36(2):228–236CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Gibala MJ, Little JP, MacDonald MJ, Hawley JA (2012) Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol 590(Pt 5):1077–1084CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Kraus WE, Houmard JA, Duscha BD et al (2002) Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med 347(19):1483–1492CrossRefPubMedGoogle Scholar
  43. 43.
    Wadden TA, Neiberg RH, Wing RR et al (2011) Four-year weight losses in the Look AHEAD study: factors associated with long-term success. Obesity (Silver Spring) 19(10):1987–1998Google Scholar
  44. 44.
    Rejeski WJ, Bray GA, Chen SH et al (2015) Aging and physical function in type 2 diabetes: 8 years of an intensive lifestyle intervention. J Gerontol A Biol Sci Med Sci 70(3):343–351Google Scholar
  45. 45.
    Kelley GA, Kelley KS (2007) Effects of aerobic exercise on lipids and lipoproteins in adults with type 2 diabetes: a meta-analysis of randomized-controlled trials. Public Health 121(9):643–655CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Halle M, Berg A, Garwers U et al (1999) Influence of 4 weeks‘ intervention by exercise and diet on low-density lipoprotein subfractions in obese men with type 2 diabetes. Metabolism 48(5):641–644CrossRefPubMedGoogle Scholar
  47. 47.
    Mohlenkamp S, Lehmann N, Breuckmann F et al (2008) Running: the risk of coronary events: prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur Heart J 29(15):1903–1910CrossRefPubMedGoogle Scholar
  48. 48.
    Heidbuchel H, La GA (2012) The right heart in athletes. Evidence for exercise-induced arrhythmogenic right ventricular cardiomyopathy. Herzschrittmacherther Elektrophysiol 23(2):82–86PubMedGoogle Scholar
  49. 49.
    O’Keefe JH, Schnohr P, Lavie CJ (2013) The dose of running that best confers longevity. Heart 99(8):588–590Google Scholar
  50. 50.
    Schnohr P, O’Keefe JH, Marott JL et al (2015) Dose of jogging and long-term mortality. J Am Coll Cardiol 65(5):411–419CrossRefPubMedGoogle Scholar
  51. 51.
    Scherr J, Braun S, Schuster T et al (2011) 72-h kinetics of high-sensitive troponin T and inflammatory markers after marathon. Med Sci Sports Exerc 43(10):1819–1827CrossRefPubMedGoogle Scholar
  52. 52.
    La GA, Burns AT, Mooney DJ et al (2012) Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J 33(8):998–1006CrossRefGoogle Scholar
  53. 53.
    Mohlenkamp S, Leineweber K, Lehmann N et al (2014) Coronary atherosclerosis burden, but not transient troponin elevation, predicts long-term outcome in recreational marathon runners. Basic Res Cardiol 109(1):391CrossRefPubMedGoogle Scholar
  54. 54.
    Wernhart S, Halle M (2014) Atrial fibrillation and long-term sports practice: epidemiology and mechanisms. Clin Res Cardiol [Epub ahead of print]Google Scholar
  55. 55.
    Schnohr P, Marott JL, Lange P, Jensen GB (2013) Longevity in male and female joggers: the Copenhagen City Heart Study. Am J Epidemiol 177(7):683–689CrossRefPubMedGoogle Scholar
  56. 56.
    Weston KS, Wisloff U, Coombes JS (2014) High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med 48(16):1227–1234CrossRefPubMedGoogle Scholar
  57. 57.
    Rognmo Ø, Moholdt T, Bakken H et al (2012) Cardiovascular risk of high- versus moderate-intensity aerobic exercise in coronary heart disease patients. Circulation 126(12):1436–1440CrossRefPubMedGoogle Scholar
  58. 58.
    Halle M (2013) Letter by Halle regarding article, „Cardiovascular risk of high- versus moderate-intensity aerobic exercise in coronary heart disease patients“. Circulation 127(21):e637CrossRefPubMedGoogle Scholar

Copyright information

© Urban & Vogel 2015

Authors and Affiliations

  • S. Wernhart
    • 1
  • M. Dinic
    • 1
  • A. Pressler
    • 1
  • M. Halle
    • 1
    • 2
    • 3
    Email author
  1. 1.Zentrum für Prävention und SportmedizinKlinikum rechts der Isar, Technische Universität MünchenMünchenDeutschland
  2. 2.DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart AllianceMünchenDeutschland
  3. 3.Else-Kröner-Fresenius-ZentrumKlinikum Rechts der IsarMünchenDeutschland

Personalised recommendations