Skip to main content
Log in

Echokardiographische Evaluation der systolischen linksventrikulären Funktion bei Herzinsuffizienz

Wertigkeit alternativer Parameter zur Bestimmung der Ejektionsfraktion

Echocardiographic evaluation of systolic left ventricular function in heart failure

Value of alternative parameters for determination of ejection fraction

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Die Bestimmung der linksventrikulären Funktion ist eine zentrale Aufgabe der Echokardiographie in der Diagnostik der Herzinsuffizienz. Die etablierte Methode hierfür ist die Bestimmung der Ejektionsfraktion (EF) durch 2-D-Planimetrie mit der Scheibchensummationsmethode nach Simpson. Jedoch gibt es hierbei einige Limitationen, wie z. B. die Annahme einer geometrischen Symmetrie, die große Intra- und Interobservervariabilität, die ungenaue Bestimmung des linksventrikulären Volumens durch verkürzende Anlotung („foreshortening“) oder die eingeschränkte Schallbarkeit des Patienten. Zur genauen Bestimmung der linksventrikulären Funktion sollten deshalb ergänzend weitere echokardiographische Methoden herangezogen werden. Die Parameter der „Speckle-tracking“-Echokardiographie haben sich sowohl als wichtige prognostische Kenngrößen bei Herzinsuffizienz als auch zur differenzialdiagnostischen Abklärung bei Kardiomyopathien bewährt. Einfache und auch bei reduzierter Schallbarkeit anwendbare Marker für die linksventrikuläre Funktion sind die Bewegung des Mitralklappenanulus (MAPSE) und die Geschwindigkeit seiner Bewegung (Sm oder S‘). Bei einer Mitralklappeninsuffizienz hingegen kann die linksventrikuläre dP/dt als Ausdruck des Druckaufbaus im linken Ventrikel herangezogen werden. Nicht zuletzt ist die 3-D-Echokardiographie durch die Möglichkeit der dreidimensionalen EF-Bestimmung und der multivektoralen „Speckle-tracking“-Analyse ein wichtiges Werkzeug für die Evaluation der linksventrikulären Funktion.

Abstract

Assessment of the left ventricular ejection fraction plays a key role in the echocardiographic diagnosis of heart failure. The parameter most commonly used is the ejection fraction computed with the biplane disc summation method of Simpson; however, there are numerous limitations to this method, such as the assumption of geometrical symmetry, a substantial intraobserver and interobserver variability, foreshortening of the left ventricle and insufficient image quality for endocardial tracking. Alternative parameters for the evaluation of left ventricular function should be taken into consideration. Speckle tracking echocardiography has proven to be a reliable prognostic factor and a good tool for differentiating cardiomyopathies. Simple measurements, which are also feasible with poor image quality, are mitral annular plane systolic excursion (MAPSE) and the velocity of mitral annular movement (Sm or S’). In mitral regurgitation, left ventricular dP/dt represents the time to build up a certain pressure gradient and is therefore a measure of the contractile force exerted. Three-dimensional echocardiography has proven to be an important tool not only for three-dimensional measurement of the left ventricular ejection fraction but also for multivectoral speckle tracking analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Lang RM, Bierig M, Devereux RB et al (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463

    Article  PubMed  Google Scholar 

  2. Bellenger NG, Burgess MI, Ray SG et al (2000) Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J 21:1387–1396

    Article  CAS  PubMed  Google Scholar 

  3. Brown J, Jenkins C, Marwick TH (2009) Use of myocardial strain to assess global left ventricular function: a comparison with cardiac magnetic resonance and 3-dimensional echocardiography. Am Heart J 157:102.e1–e5

    Article  PubMed  Google Scholar 

  4. Leitman M, Lysyansky P, Sidenko S et al (2004) Two-dimensional strain – a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr 17:1021–1029

    Article  PubMed  Google Scholar 

  5. Mondillo S, Galderisi M, Mele D et al (2011) Speckle-tracking echocardiography: a new technique for assessing myocardial function. J Ultrasound Med 30:71–83

    PubMed  Google Scholar 

  6. Marwick TH, Leano RL, Brown J et al (2009) Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range. JACC Cardiovasc Imaging 2:80–84

    Article  PubMed  Google Scholar 

  7. Becker M, Kramann R, Dohmen G et al (2007) Impact of left ventricular loading conditions on myocardial deformation parameters: analysis of early and late changes of myocardial deformation parameters after aortic valve replacement. J Am Soc Echocardiogr 20:681–689

    Article  PubMed  Google Scholar 

  8. Stanton T, Marwick TH (2010) Assessment of subendocardial structure and function. JACC Cardiovasc Imaging 3:867–875

    Article  PubMed  Google Scholar 

  9. Muraru D, Cucchini U, Mihaila S et al (2014) Left ventricular myocardial strain by three-dimensional speckle-tracking echocardiography in healthy subjects: reference values and analysis of their physiologic and technical determinants. J Am Soc Echocardiogr 27:858–871.e1

    Article  PubMed  Google Scholar 

  10. Yuda S, Sato Y, Abe K et al (2014) Inter-vendor variability of left ventricular volumes and strains determined by three-dimensional speckle tracking echocardiography. Echocardiography 31:597–604

    Article  PubMed  Google Scholar 

  11. Voigt JU, Pedrizzetti G, Lysyansky P et al (2015) Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging 16:1–11

    Article  PubMed  Google Scholar 

  12. Solomon SD, Anavekar N, Skali H et al (2005) Influence of ejection fraction on cardiovascular outcomes in a broad spectrum of heart failure patients. Circulation 112:3738–3744

    Article  PubMed  Google Scholar 

  13. Bhatia RS, Tu JV, Lee DS et al (2006) Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med 355:260–269

    Article  CAS  PubMed  Google Scholar 

  14. Cho GY, Marwick TH, Kim HS et al (2009) Global 2-dimensional strain as a new prognosticator in patients with heart failure. J Am Coll Cardiol 54:618–624

    Article  PubMed  Google Scholar 

  15. Serri K, Reant P, Lafitte M et al (2006) Global and regional myocardial function quantification by two-dimensional strain: application in hypertrophic cardiomyopathy. J Am Coll Cardiol 47:1175–1181

    Article  PubMed  Google Scholar 

  16. Phelan D, Collier P, Thavendiranathan P et al (2012) Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 98:1442–1448

    Article  PubMed  Google Scholar 

  17. Poterucha JT, Kutty S, Lindquist RK et al (2012) Changes in left ventricular longitudinal strain with anthracycline chemotherapy in adolescents precede subsequent decreased left ventricular ejection fraction. J Am Soc Echocardiogr 25:733–740

    Article  PubMed  Google Scholar 

  18. Sera F, Kato TS, Farr MJ et al (2013) Left ventricular longitudinal strain by speckle-tracking echocardiography for the detection of treatment-requiring rejection in clinically asymptomatic heart transplant recipients. J Am Coll Cardiol 61:E1028

    Article  Google Scholar 

  19. Voigt JU, Lindenmeier G, Exner B et al (2003) Incidence and characteristics of segmental postsystolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. J Am Soc Echocardiogr 16:415–423

    Article  PubMed  Google Scholar 

  20. Haugaa KH, Smedsrud MK, Steen T et al (2010) Mechanical dispersion assessed by myocardial strain in patients after myocardial infarction for risk prediction of ventricular arrhythmia. JACC Cardiovasc Imaging 3:247–256

    Article  PubMed  Google Scholar 

  21. Bargiggia GS, Bertucci C, Recusani F et al (1989) A new method for estimating left ventricular dP/dt by continuous wave Doppler-echocardiography. Validation studies at cardiac catheterization. Circulation 80:1287–1292

    Article  CAS  PubMed  Google Scholar 

  22. Chung N, Nishimura RA, Holmes DR Jr et al (1992) Measurement of left ventricular dp/dt by simultaneous Doppler echocardiography and cardiac catheterization. J Am Soc Echocardiogr 5:147–152

    Article  CAS  PubMed  Google Scholar 

  23. Kolias TJ, Aaronson KD, Armstrong WF (2000) Doppler-derived dP/dt and -dP/dt predict survival in congestive heart failure. J Am Coll Cardiol 36:1594–1599

    Article  CAS  PubMed  Google Scholar 

  24. Kaul S, Tei C, Hopkins JM et al (1984) Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J 107:526–531

    Article  CAS  PubMed  Google Scholar 

  25. Willenheimer R (1998) Assessment of left ventricular dysfunction and remodeling by determination of atrioventricular plane displacement and simplified echocardiography. Scand Cardiovasc J Suppl 48:1–31

    CAS  PubMed  Google Scholar 

  26. Hu K, Liu D, Herrmann S et al (2013) Clinical implication of mitral annular plane systolic excursion for patients with cardiovascular disease. Eur Heart J Cardiovasc Imaging 14:205–212

    Article  PubMed  Google Scholar 

  27. Bergenzaun L, Ohlin H, Gudmundsson P et al (2013) Mitral annular plane systolic excursion (MAPSE) in shock: a valuable echocardiographic parameter in intensive care patients. Cardiovasc Ultrasound 11:16

    Article  PubMed Central  PubMed  Google Scholar 

  28. Elnoamany MF, Abdelhameed AK (2006) Mitral annular motion as a surrogate for left ventricular function: correlation with brain natriuretic peptide levels. Eur J Echocardiogr 7:187–198

    Article  PubMed  Google Scholar 

  29. Matos J, Kronzon I, Panagopoulos G, Perk G (2012) Mitral annular plane systolic excursion as a surrogate for left ventricular ejection fraction. J Am Soc Echocardiogr 25:969–974

    Article  PubMed  Google Scholar 

  30. Dalen H, Thorstensen A, Vatten LJ et al (2010) Reference values and distribution of conventional echocardiographic doppler measures and longitudinal tissue doppler velocities in a population free from cardiovascular disease. Circ Cardiovasc Imaging 3:614–622

    Article  PubMed  Google Scholar 

  31. Galiuto L, Ignone G, Demaria AN (1998) Contraction and relaxation velocities of the normal left ventricle using pulsed-wave tissue Doppler echocardiography. Am J Cardiol 81:609–614

    Article  CAS  PubMed  Google Scholar 

  32. Yamada H, Oki T, Tabata T et al (1998) Assessment of left ventricular systolic wall motion velocity with pulsed tissue Doppler imaging: comparison with peak dP/dt of the left ventricular pressure curve. J Am Soc Echocardiogr 11:442–449

    Article  CAS  PubMed  Google Scholar 

  33. Nikitin NP, Loh PH, Silva R et al (2006) Prognostic value of systolic mitral annular velocity measured with Doppler tissue imaging in patients with chronic heart failure caused by left ventricular systolic dysfunction. Heart 92:775–779

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Tei C, Ling LH, Hodge DO et al (1995) New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function – a study in normals and dilated cardiomyopathy. J Cardiol 26:357–366

    CAS  PubMed  Google Scholar 

  35. Karatzis EN, Giannakopoulou AT, Papadakis JE et al (2009) Myocardial performance index (Tei index): evaluating its application to myocardial infarction. Hellenic J Cardiol 50:60–65

    PubMed  Google Scholar 

  36. Dujardin KS, Tei C, Yeo TC et al (1998) Prognostic value of a Doppler index combining systolic and diastolic performance in idiopathic-dilated cardiomyopathy. Am J Cardiol 82:1071–1076

    Article  CAS  PubMed  Google Scholar 

  37. Dandel M, Lehmkuhl H, Kemper D, Hetzer R (2007) Pseudonormalization tendency of the Tei index at high filling pressures – a serious limitation for its use as a myocardial performance index. Circulation 116:II_499

    Google Scholar 

  38. Onose Y, Fukuda N, Shinohara H et al (2004) Pseudonormalization of the TEI index in patients with left ventricular systolic dysfunction and congestive heart failure. J Echocardiogr 2:7–13

    Article  Google Scholar 

  39. Luis SA, Yamada A, Khandheria BK et al (2014) Use of three-dimensional speckle-tracking echocardiography for quantitative assessment of global left ventricular function: a comparative study to three-dimensional echocardiography. J Am Soc Echocardiogr 27:285–291

    Article  PubMed  Google Scholar 

  40. Franke A, Kühl HP, Hanrath P (2000) Bildgebende Verfahren in der Kardiologie: 3D-Echokardiographie. Z Kardiol 89:150–159

    Article  CAS  PubMed  Google Scholar 

  41. Macron L, Lim P, Bensaid A et al (2010) Single-beat versus multibeat real-time 3D echocardiography for assessing left ventricular volumes and ejection fraction: a comparison study with cardiac magnetic resonance. Circ Cardiovasc Imaging 3:450–455

    Article  PubMed  Google Scholar 

  42. Dorosz JL, Lezotte DC, Weitzenkamp DA et al (2012) Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: a systematic review and meta-analysis. J Am Coll Cardiol 59:1799–1808

    Article  PubMed Central  PubMed  Google Scholar 

  43. Chuang ML, Parker RA, Riley MF et al (1999) Three-dimensional echocardiography improves accuracy and compensates for sonographer inexperience in assessment of left ventricular ejection fraction. J Am Soc Echocardiogr 12:290–299

    Article  CAS  PubMed  Google Scholar 

  44. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39.e14

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. V. Dornberger, H.D. Dittrich und R. Busch geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Busch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dornberger, V., Dittrich, H. & Busch, R. Echokardiographische Evaluation der systolischen linksventrikulären Funktion bei Herzinsuffizienz. Herz 40, 185–193 (2015). https://doi.org/10.1007/s00059-015-4205-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-015-4205-7

Schlüsselwörter

Keywords

Navigation