Skip to main content
Log in

Predictive value of the novel risk score BETTER (BiomarkErs and compuTed Tomography scorE on Risk stratification) for patients with unstable angina

Prädiktiver Wert des neuen Risikoscores BETTER (BiomarkErs and compuTed Tomography scorE on Risk stratification) bei instabiler Angina pectoris

  • Original article
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Background

The Braunwald classification and TIMI (Thrombolysis In Myocardial Infarction) risk score are used to stratify cardiovascular risk in patients with unstable angina (UA). However, these scores have a limited capacity in the practice of cardiology.

Objectives

This study sought to develop a new score, based on blood biomarkers and coronary computed tomographic angiography (CCTA) characteristics, for patients with UA.

Patients and methods

The study group consisted of 201 patients with confirmed UA. Follow-up time was 1 year; major adverse cardiac events (MACEs) included cardiovascular death, recurrent acute coronary syndrome (ACS), and re-admission to hospital. Blood biomarkers including high-sensitivity cardiac troponin T (Hs-cTnT), high-sensitivity C-reactive protein (Hs-CRP), myeloperoxidase (MPO) N-terminal pro-B-type natriuretic peptide (NT-proBNP), and ischemia-modified albumin (IMA) were measured. CCTA characteristics such as stenosis, plaque, epicardial fat volume (EFV), and calcification were evaluated. After analysis of relationships, the novel risk BETTER (BiomarkErs and compuTed Tomography scorE on Risk stratification) score was assessed in 201 patients.

Results

In all, 25 MACEs (12.44 %) occurred: 2 cardiac deaths (1.00 %), 13 non-fatal myocardial infarctions (6.47 %), 10 recurrent ACS and re-admission in hospital (4.96 %). Serum levels of MPO, NT-proBNP, Hs-TnT, Hs-CRP, and IMA were correlated with MACEs (r = 0.20, r = 0.40, r = 0.18, r = 0.24, p < 0.01, respectively; r = 0.12, p > 0.05). CCTA characteristics of stenosis, plaque, EFV, and calcification were significantly correlated with MACEs (r = 0.53, r = 0.57, r = 0.42, and r = 0.52, all p < 0.01 respectively) and were significantly higher in the MACEs group than in the non-MACEs group. Thus, a new risk score was created combining biomarkers and CCTA statistics into a Cox multivariable for risk prediction of 1-year MACEs: BETTER risk score = MPO•0.1 + Hs-TnT•50 + Hs-CRP•0.4 + stenosis•9 + plaque•13 + EFV•0.2.

The areas under the curve (AUC) for the prediction by Hs-cTnT, Hs-CRP, and MPO were 0.536 (95 % CI 0.409–0.662), 0.745 (95 % CI 0.641–0.850), and 0.650 (95 % CI 0.541–0.760), respectively. The AUC for the prediction of CCTA characteristics of stenosis, plaque, and EFV were 0.905 (95 % CI 0.860–0.950), 0.912 (95 % CI 0.867–0.957), and 0.835 (95 % CI 0.752–0.917), respectively. In addition, the AUC was 0.621 (95 % CI 0.492–0.750) for the Braunwald classification and 0.680 (95 % CI 0.559–0.801) for the TIMI score. The AUC for the BETTER risk score was 0.937 (95 % CI 0.902–0.972).

Conclusion

The BETTER risk score is new tool specifically developed for patients with UA. The score displays higher prediction accuracy in terms of discrimination and calibration than other currently available scores for risk stratification.

Zusammenfassung

Hintergrund

Um Patienten mit instabiler Angina pectoris (AP) nach kardiovaskulärem Risiko zu stratifizieren werden die Braunwald-Klassifikation und der TIMI(Thrombolysis In Myocardial Infarction)-Risikoscore verwendet. Doch in der Praxis sind beide nur begrenzt einsetzbar.

Ziele

Entwickelt werden sollte ein neuer, auf Serum-Biomarkern und CCTA(„koronare Angio-Computertomographie)-Parametern basierender Score für Patienten mit instabiler AP.

Patienten und Methoden

Das Studienkollektiv bestand aus 201 Patienten mit diagnostizierter instabiler AP. Die Follow-up-Zeit betrug 1 Jahr. Zu schwerwiegenden unerwünschten kardialen Ereignissen („major adverse cardiac events“, MACEs) zählten kardiovaskulär bedingter Tod, rezidivierendes akutes Koronarsyndrom („acute coronary syndrome“, ACS) und Wiederaufnahme in die Klinik. Gemessen wurden Serum-Biomarker, u. a. hoch sensitives kardiales Troponin T (Hs-cTnT), hoch sensitives C-reaktives Protein (Hs-CRP), Myeloperoxidase (MPO), N-terminales pro-B-Typ natriuretisches Peptid (NT-proBNP) und ischämiemodifiziertes Albumin (IMA) sowie CCTA-Parameter, wie Stenosen, Plaque, Volumen des epikardialen Fettgewebes (EFV) und Kalzifizierungen. Nach Analyse der Beziehungen wurde der BETTER(BiomarkErs and compuTed Tomography scorE on Risk stratification)-Score bei allen Patienten bestimmt.

Ergebnisse

Insgesamt kam es zu 25 MACEs (12,44 %): 2 kardial bedingte Todesfälle (1 %), 13 nichtletale Myokardinfarkte (6,47 %), 10 rezidivierende ACS und Wiederaufnahmen in die Klinik (4,96 %). Serumkonzentrationen von MPO, NT-proBNP, Hs-TnT, Hs-CRP und IMA wurden mit den MACEs korreliert (r = 0,20, r = 0,40, r = 0,18, r = 0,24, p < 0,01 bzw. r = 0,12, p > 0,05). Es zeigten sich signifikante Korrelationen zwischen den CCTA-Parametern Stenose, Plaque, EFV und Kalzifizierungen und MACEs (r = 0,53, r = 0,57, r = 0,42 und r = 0,52, jeweils p < 0,01), in der MACEs-Gruppe waren sie signifikant ausgeprägter als in der Gruppe ohne MACE. Unter Verwendung von Biomarkern und CCTA-Statistiken wurde in einer multivariaten Cox-Analyse ein neuer Risikoscore für die Prädiktion des MACE-Einjahresrisikos generiert, der Score BETTER MPO•0,1 + Hs-TnT•50 + Hs-CRP•0,4 + Stenose•9 + Plaque•13 + EFV•0,2.

Die Flächen unter der Kurve (AUC) für die Prädiktion mittels Hs-cTnT, Hs-CRP bzw. MPO betrugen 0,536 (95 %-KI 0,409–0,662), 0,745 (95 %-KI 0,641–0,850) bzw. 0,650 (95 %-KI 0,541–0,760), die AUC für die Prädiktion der CCTA-Parameter Stenose, Plaque und EFV 0,905 (95 %-KI 0,860–0,950), 0,912 (95 %-KI 0,867–0,957) und 0,835 (95 %-KI 0,752–0,917). Die AUC für die Braunwald-Klassifikation war 0,621 (95 %-KI 0,492–0,750), für den TIMI-Score 0,680 (95 %-KI 0,559–0,801) und für den BETTER-Risikoscore 0,937 (95 %-KI 0,902–0,972).

Fazit

Der BETTER-Risikoscore ist ein neues, speziell für IA-Patienten entwickeltes Tool. Hinsichtlich Diskrimination und Kalibrierung hat er eine höhere prädiktive Genauigkeit gezeigt als andere zzt. verfügbare Scores zur Risikostratifikation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Pearson TA, Mensah GA, Alexander RW et al (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107(3):499–511

    Article  PubMed  Google Scholar 

  2. Danesh J, Wheeler JG, Hirschfield GM et al (2004) C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 350(14):1387–1397

    Article  CAS  PubMed  Google Scholar 

  3. Galvani M, Ferrini D, Ottani F (2004) Natriuretic peptides for risk stratification of patients with acute coronary syndromes. Eur J Heart Fail 6(3):327–333

    Article  CAS  PubMed  Google Scholar 

  4. Leistner DM, Klotsche J, Pieper L et al (2013) Prognostic value of NT-pro-BNP and hs-CRP for risk stratification in primary care: results from the population-based DETECT study. Clin Res Cardiol 102(4):259–268

    Article  PubMed  Google Scholar 

  5. Maneewong K, Mekrungruangwong T, Luangaram S et al (2011) Combinatorial determination of ischemia modified albumin and protein carbonyl in the diagnosis of nonST-elevation myocardial infraction. Indian J Clin Biochem 26(4):389–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Marshall CJ, Nallaratnam M, Mocatta T et al (2010) Factors influencing local and systemic levels of plasma myeloperoxidase in ST-segment elevation acute myocardial infarction. Am J Cardiol 106(3):316–322

    Article  CAS  PubMed  Google Scholar 

  7. Goldmann BU, Rudolph V, Rudolph TK et al (2009) Neutrophil activation precedes myocardial injury in patients with acute myocardial infarction. Free Radic Biol Med 47(1):79–83

    Article  CAS  PubMed  Google Scholar 

  8. Ferencik M, Schlett CL, Ghoshhajra BB et al (2012) A computed tomography-based coronary lesion score to predict acute coronary syndrome among patients with acute chest pain and significant coronary stenosis on coronary computed tomographic angiogram. Am J Cardiol 110(2):183–189

    Article  PubMed Central  PubMed  Google Scholar 

  9. Ndrepepa G, Tada T, Fusaro M et al (2012) Association of coronary atherosclerotic burden with clinical presentation and prognosis in patients with stable and unstable coronary artery disease. Clin Res Cardiol 101(12):1003–1011

    Article  PubMed  Google Scholar 

  10. Budoff MJ, Hokanson JE, Nasir K et al (2010) Progression of coronary artery calcium predicts all-cause mortality. JACC Cardiovasc Imaging 3(12):1229–1236

    Article  PubMed  Google Scholar 

  11. Gorter PM, Lindert AS van, Vos AM de et al (2008) Quantification of epicardial and peri-coronary fat using cardiac computed tomography; reproducibility and relation with obesity and metabolic syndrome in patients suspected of coronary artery disease. Atherosclerosis 197(2):896–903

    Article  CAS  PubMed  Google Scholar 

  12. Wright RS, Anderson JL, Adams CD et al (2011) 2011 ACCF/AHA focused update of the guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction (updating the 2007 guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in collaboration with the American College of Emergency Physicians, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 57(19):1920–1959

    Article  PubMed  Google Scholar 

  13. Dey D, Wong ND, Tamarappoo B et al (2010) Computer-aided non-contrast CT-based quantification of pericardial and thoracic fat and their associations with coronary calcium and metabolic syndrome. Atherosclerosis 209(1):136–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Mega JL, Morrow DA, Sabatine MS et al (2005) Correlation between the TIMI risk score and high-risk angiographic findings in non-ST-elevation acute coronary syndromes: observations from the Platelet Receptor Inhibition in Ischemic Syndrome Management in Patients Limited by Unstable Signs and Symptoms (PRISM-PLUS) trial. Am Heart J 149(5):846–850

    Article  PubMed  Google Scholar 

  15. Garcia S, Canoniero M, Peter A et al (2004) Correlation of TIMI risk score with angiographic severity and extent of coronary artery disease in patients with non-ST-elevation acute coronary syndromes. Am J Cardiol 93(7):813–816

    Article  PubMed  Google Scholar 

  16. Lakhani MS, Qadir F, Hanif B et al (2010) Correlation of thrombolysis in myocardial infarction (TIMI) risk score with extent of coronary artery disease in patients with acute coronary syndrome. J Pak Med Assoc 60(3):197–200

    PubMed  Google Scholar 

  17. Body R, McDowell G, Carley S et al (2008) Do risk factors for chronic coronary heart disease help diagnose acute myocardial infarction in the emergency department? Resuscitation 79(1):41–45

    Article  PubMed  Google Scholar 

  18. Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359(22):2324–2336

    Article  CAS  PubMed  Google Scholar 

  19. Keller T, Zeller T, Peetz D et al (2009) Sensitive troponinlassay in early diagnosis of acute myocardial infarction. N Engl J Med 361(9):868–877

    Article  CAS  PubMed  Google Scholar 

  20. Reichlin T, Hochholzer W, Bassetti S et al (2009) Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. N Engl J Med 361(9):858–867

    Article  CAS  PubMed  Google Scholar 

  21. Shih J, Datwyler SA, Hsu SC et al (2007) Effect of collection tube type and preanalytical handling on myeloperoxidase concentrations. Clin Chem 54(6):1076–1079

    Article  Google Scholar 

  22. Lindahl B, Venge P, Wallentin L (1997) Troponin T identifies patients with unstable coronary artery disease who benefit from longterm antithrombotic protection. Fragmin in Instable Coronary Artery Disease (FRISC) Study Group. J Am Coll Cardiol 29(1):43–48

    Article  CAS  PubMed  Google Scholar 

  23. Foussas SG, Zairis MN, Lyras AG et al (2005) Early prognostic usefulness of C-reactive protein added to the Thrombolysis In Myocardial Infarction risk score in acute coronary syndromes. Am J Cardiol 96(4):533–537

    Article  CAS  PubMed  Google Scholar 

  24. Omland T, Persson A, Ng L et al (2002) N-terminal pro-B-type natriuretic peptide and long-term mortality in acute coronary syndromes. Circulation 106(23):2913–2918

    Article  CAS  PubMed  Google Scholar 

  25. Van BE, Dallongeville J, Vicaut E et al (2010) Ischemia-modified albumin levels predict long-term outcome in patients with acute myocardial infraction. The French Nationwide OPREA study. Am Heart J 159(4):570–576

    Article  Google Scholar 

  26. Morrow DA, Lemos JA de, Sabatine MS et al (2003) Evaluation of B-type natriuretic peptide for risk assessment in unstable angina/non-ST-elevation myocardial infraction: B-type natriuretic peptide and prognosis in TACTICS-TIMI 18. J Am Coll Cardiol 41(8):1246–1272

    Google Scholar 

  27. Wiviott SD, Lemos JA de et al (2004) Pathophysiology, prognostic significance and clinical utility of B-type natriuretic peptide in acute coronary syndromes. Clin Chim Acta 346:119–128

    Article  CAS  PubMed  Google Scholar 

  28. Hulten EA, Carbonaro S, Petrillo SP et al (2011) Prognostic value of cardiac computed tomography angiography: a systematic review and meta-analysis. J Am Coll Cardiol 57(10):1237–1247

    Article  PubMed  Google Scholar 

  29. Min JK, Dunning A, Lin FY et al (2011) Age- and sex-related differences in all-cause mortality risk based on coronary computed tomography angiography findings results from the International Multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: an International Multicenter Registry) of 23,854 patients without known coronary artery disease. J Am Coll Cardiol 58(8):849–860

    Article  PubMed  Google Scholar 

  30. Leber AW, Knez A, Becker A et al (2004) Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J Am Coll Cardiol 43(7):1241–1247

    Article  PubMed  Google Scholar 

  31. Mahabadi AA, Massaro JM, Rosito GA et al (2009) Hoffmann U. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur Heart J 30(7):850–856

    Article  PubMed Central  PubMed  Google Scholar 

  32. Rosito GA, Massaro JM, Hoffmann U et al (2008) Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 117(5):605–613

    Article  PubMed  Google Scholar 

  33. Coylewright M, Rice K, Budoff MJ et al (2011) Differentiation of severe coronary artery calcification in the Multi-Ethnic Study of Atherosclerosis. Atherosclerosis 219:616–622

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. Y. Xia, Y. Xia, K. Xu, Y. Ma, D. Pan, T. Xu, L. Lu and D. Li state that there are no conflicts of interest. All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Li MD, PhD.

Additional information

Yan Xia and Yong Xia contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Xia, Y., Xu, K. et al. Predictive value of the novel risk score BETTER (BiomarkErs and compuTed Tomography scorE on Risk stratification) for patients with unstable angina. Herz 40 (Suppl 1), 43–50 (2015). https://doi.org/10.1007/s00059-014-4141-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-014-4141-y

Keywords

Schlüsselwörter

Navigation