Skip to main content
Log in

Genetische Analysen als Basis einer individualisierten Medizin bei koronarer Herzkrankheit

Genetic analyses as basis for a personalized medicine in patients with coronary artery disease

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Genomweite Analysen haben das Verständnis der Ätiologie der koronaren Herzerkrankung (KHK) um neue Dimensionen erweitert. Nach aktuellem Stand finden sich bei Westeuropäern 46 chromosomale Loci, die mit genomweiter Signifikanz (d. h. p<5×10-8) mit einem erhöhten Risiko für die KHK assoziiert sind. Da die individuelle DNA-Sequenz schon bei Geburt feststeht und somit die risikobehafteten Varianten nicht erst durch sekundäre Krankheitsprozesse („confounder“) auftreten, kann angenommen werden, dass jedes betroffene Gen in einen primären und damit kausalen Pathomechanismus der KHK eingreift. Interessanterweise lassen sich nur etwa 20% der Effekte, welche durch die neu entdeckten Loci vermittelt werden, durch die Beeinflussung traditioneller Risikofaktoren erklären. Dies impliziert, dass bislang noch unerforschte Mechanismen – und damit potenziell neue therapeutische Angriffsflächen – zur Entstehung der KHK beitragen. Überrascht hat auch die hohe Allelhäufigkeit der bislang entdeckten Risikoallele: Im doppelt angelegten Chromosomensatz tragen Individuen westeuropäischer Abstammung im Durchschnitt 30–50 risikobehaftete Allele an den 46 Loci. Somit besteht bei allen Mitgliedern unserer Population eine mehr oder weniger große genetische Disposition zur KHK. Andererseits ist auch bemerkenswert, dass das genetische Risiko bei vielen Trägern der Risikoallele anscheinend kompensiert werden kann, da selbst im hohen Alter nicht bei jedem eine klinisch manifeste KHK auftritt. Dies weist auf bislang noch unverstandene Gen-Gen- oder Gen-Umwelt-Interaktionen hin und begrenzt die aktuellen Möglichkeiten der individuellen Risikoprädiktion.

Abstract

Knowledge about the etiology of coronary artery disease (CAD) entered new dimensions using genome-wide association studies. The current situation is that 46 chromosomal loci have been identified to be associated with CAD with genome-wide significance, i.e. p<5×10-8, in Western Europeans. As the individual DNA sequence remains unchanged after fertilization, the risk variants cannot occur due to confounders, such as secondary disease processes. Thus, it can be proposed that these variants are directly affecting a primary and thereby causal pathophysiological process in CAD. Interestingly, only 20% of the effects mediated by the identified loci can be explained by the influence of traditional risk factors. This implies that yet unknown mechanisms and, as a consequence, new therapeutic targets play an important role in the pathophysiology of CAD. However, the high allele frequency of risk loci was also surprising. In the diploid chromosome set Western European individuals carry on average 30–50 risk variants at the 46 loci. Considering this, every individual in the population carries a larger or smaller genetic predisposition for CAD. On the other hand it is remarkable that many risk allele carriers seem to be able to compensate the genetic risk: even in old age not everyone suffers from CAD. This indicates yet unknown gene-gene and gene-environment interactions and limits the current possibilities in individual risk prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Samani NJ, Erdmann J, Hall AS et al (2007) Genomewide association analysis of coronary artery disease. N Engl J Med 357:443–453

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. McPherson R, Pertsemlidis A, Kavaslar N et al (2007) A common allele on chromosome 9 associated with coronary heart disease. Science 316:1488–1491

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  CAS  Google Scholar 

  4. Myocardial Infarction Genetics Consortium (2009) Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 41:334–341

    Article  CAS  Google Scholar 

  5. The IBC 50K CAD Consortium (2011) Large-scale gene-centric analysis identifies novel variants for coronary artery disease. PLoS Genet 7:e1002260

    Article  CAS  Google Scholar 

  6. Erdmann J, Grosshennig A, Braund PS et al (2009) New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat Genet 41:280–282

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Schunkert H, König IR, Kathiresan S et al (2011) Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 43:333–338

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. C4D Consortium (2011) A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat Genet 43:339–344

    Google Scholar 

  9. CARDIoGRAMplusC4D Consortium (2013) Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 45:25–33

    Google Scholar 

  10. Prins B P, Lagou V, Asselbergs FW et al (2012) Genetics of coronary artery disease: genome-wide association studies and beyond. Atherosclerosis 225:1–10

    Article  PubMed  CAS  Google Scholar 

  11. Do R, Kathiresan S, Abecasis GR (2012) Exome sequencing and complex disease: practical aspects of rare variant association studies. Hum Mol Genet 21:R1–R9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Schunkert H, Götz A, Braund P et al (2008) Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation 117:1675–1684

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kessler T, Erdmann J, Schunkert H (2013) Genetics of coronary artery disease and myocardial infarction – 2013. Curr Cardiol Rep 15:368

    Article  PubMed  Google Scholar 

  14. Braenne I, Medack A, Stark K et al (2012) Whole-exome sequencing in an extended family with myocardial infarction identified a potential functional mutation in PDE5A. Circulation 126:A19823

    Google Scholar 

  15. Erdmann J, Stark K, Esslinger UB et al (2013) Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature 504(7480):432–436

    Article  PubMed  CAS  Google Scholar 

  16. Braenne I, Medack A, Stark K et al (2012) Ldlr Splice-Site Mutation (ivs9–1g > A) Identified by whole-exome sequencing in an extended family with myocardial infarction. Circulation 126:A19822

    Google Scholar 

  17. Assmann G, Schulte H, Cullen P (1997) New and classical risk factors – the Münster heart study (PROCAM). Eur J Med Res 2:237–242

    PubMed  CAS  Google Scholar 

  18. Conroy RM, Pyörälä K, Fitzgerald AP et al (2003) Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 24:987–1003

    Article  PubMed  CAS  Google Scholar 

  19. D’Agostino RB Sr, Vasan RS, Pencina MJ et al (2008) General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117:743–753

    Article  Google Scholar 

  20. Musunuru K, Strong A, Frank-Kamenetsky M et al (2010) From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 466:714–719

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Diemert P, Samani NJ, Schunkert H (2010) Sorting out cholesterol and coronary artery disease. N Engl J Med 363:2462–2463

    Article  Google Scholar 

  22. Pasmant E, Sabbagh A, Vidaud M, Bièche I (2011) ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J 25:444–448

    Article  PubMed  CAS  Google Scholar 

  23. Harismendy O, Notani D, Song X et al (2011) 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature 470:264–268

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Visel A, Zhu Y, May D et al (2010) Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature 464:409–412

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Pu X, Xiao Q, Kiechl S et al (2013) ADAMTS7 cleavage and vascular smooth muscle cell migration is affected by a coronary-artery-disease-associated variant. Am J Hum Genet 92:366–374

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Wang L, Zheng J, Bai X et al (2009) ADAMTS-7 mediates vascular smooth muscle cell migration and neointima formation in balloon-injured rat arteries. Circ Res 104:688–698

    Article  PubMed  CAS  Google Scholar 

  27. Aherrahrou Z, Kessler T, Schmidt K et al (2011) Knockout of the coronary artery disease risk gene adamts-7 inhibits neointima formation and stenosis of arteries. Circulation 124:A15199

    Google Scholar 

  28. Maouche S, Schunkert H (2012) Strategies beyond genome-wide association studies for atherosclerosis. Arterioscler Thromb Vasc Biol 32:170–181

    Article  PubMed  CAS  Google Scholar 

  29. Yang X, Huan T, Maouche S et al (2011) Network-driven integrative genomics analysis of the cardiogram gwas reveals key drivers and subnetworks of coronary artery disease. Circulation 124:A17892

    Google Scholar 

  30. Erbilgin A, Siemers N, Kayne P et al (2013) Gene expression analyses of mouse aortic endothelium in response to atherogenic stimuli. Arterioscler Thromb Vasc Biol 33:2509–2517

    Article  PubMed  CAS  Google Scholar 

  31. Orozco LD, Bennett BJ, Farber CR et al (2012) Unraveling inflammatory responses using systems genetics and gene-environment interactions in macrophages. Cell 151:658–670

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Nas A van, Pan C, Ingram-Drake LA et al (2013) The systems genetics resource: a web application to mine global data for complex disease traits. Front Genet 4:84

    PubMed Central  PubMed  Google Scholar 

  33. Ashley EA, Butte AJ, Wheeler MT et al (2010) Clinical assessment incorporating a personal genome. Lancet 375:1525–1535

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. MacArthur DG, Balasubramanian S, Frankish A et al (2012) A systematic survey of loss-of-function variants in human protein-coding genes. Science 335:823–828

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Green RC, Berg JS, Grody WW et al (2013) ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med 15:565–574

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Erdmann J, Schunkert H (2013) Forty-five years to diagnosis. Neuromuscul Disord 23:503–505

    Article  PubMed  Google Scholar 

  37. Kessler T, Schunkert H (2012) Clinical validation of genetic markers for improved risk estimation. Eur J Prev Cardiol 19:25–32

    Article  PubMed  Google Scholar 

  38. Paynter NP, Chasman DI, Paré G et al (2010) Association between a literature-based genetic risk score and cardiovascular events in women. JAMA 303:631–637

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Hughes MF, Saarela O, Stritzke J et al (2012) Genetic markers enhance coronary risk prediction in men: the MORGAM prospective cohorts. PLoS ONE 7:e40922

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Cohen JC, Boerwinkle E, Mosley TH, Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354:1264–1272

    Article  PubMed  CAS  Google Scholar 

  41. Giugliano RP, Desai NR, Kohli P et al (2012) Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet 380:2007–2017

    Article  PubMed  CAS  Google Scholar 

  42. Pollin TI, Damcott CM, Shen H et al (2008) A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science 322:1702–1705

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Kathiresan S, Melander O, Guiducci C et al (2008) Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 40:189–197

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Graham MJ, Lee RG, Bell TA 3rd et al (2013) Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ Res 112:1479–1490

    Article  PubMed  CAS  Google Scholar 

  45. Wang L, McLoed HL, Weinshilboum RM (2011) Genomics and drug response. N Engl J Med 364:1144–1153

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353:172–187

    Article  PubMed  CAS  Google Scholar 

  47. Schunkert H, Erdmann J, Samani NJ (2010) Genetics of myocardial infarction: a progress report. Eur Heart J 31:918–925

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. T. Kessler, B. Kaess, F. Bourier, J. Erdmann und H. Schunkert geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Schunkert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessler, T., Kaess, B., Bourier, F. et al. Genetische Analysen als Basis einer individualisierten Medizin bei koronarer Herzkrankheit. Herz 39, 186–193 (2014). https://doi.org/10.1007/s00059-013-4048-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-013-4048-z

Schlüsselwörter

Keywords

Navigation