Skip to main content
Log in

MicroRNA-based therapy in cardiology

Mikro-RNA-basierte Therapie in der Kardiologie

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

The pathogenic role of noncoding microRNA (miR, miRNA) has been demonstrated for several disease conditions in the heart. The underlying molecular mechanisms have been deciphered for numerous miRs that are deregulated as a result of cardiac stress. Innovative therapeutic strategies based on antifibrotic, antihypertrophic, or proangiogenic effects of miRNAs are being currently developed to improve the function of the failing heart. Identifying a safe and efficient miR-based strategy remains challenging, yet these novel approaches offer enormous potential for the treatments for heart failure. In this review we highlight the latest development in the cardiac miRNA field.

Zusammenfassung

Die Beteiligung nichtkodierender Mikro-RNA (miR, miRNA) an pathologischen Veränderungen wurde für verschiedene Herzerkrankungen gezeigt. Für einzelne, nach kardialem Stress herauf- oder herunterregulierte miR sind die zugrunde liegenden molekularen Mechanismen aufgeklärt worden. Neuartige miR-basierte Therapiestrategien (antifibrotisch, antihypertroph oder proangiogen) zielen nun darauf, funktionale Parameter des insuffzienten Myokards zu verbessern. Die Identifizierung geeigneter Kandidaten-miR ist eine große Herausforderung, allerdings weisen diese Therapieoptionen auch ein großes Potenzial für die Behandlung der Herzinsuffizienz auf. In diesem Übersichtsartikel werden miR-basierte therepeutische Strategien vorgestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358:1370–1380

    Article  PubMed  CAS  Google Scholar 

  2. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35:569–582

    Article  PubMed  CAS  Google Scholar 

  3. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  4. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  PubMed  CAS  Google Scholar 

  5. Lewis BP, Shih IH, Jones-Rhoades MW et al (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  PubMed  CAS  Google Scholar 

  6. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  PubMed  CAS  Google Scholar 

  7. Rooij E van, Sutherland LB, Liu N et al (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 103:18255–18260

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Izumo S, Nadal-Ginard B, Mahdavi V (1988) Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci U S A 85:339–343

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Thum T, Galuppo P, Wolf C et al (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116:258–267

    Article  PubMed  CAS  Google Scholar 

  10. Khan R, Sheppard R (2006) Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology 118:10–24

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Thum T, Gross C, Fiedler J et al (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456:980–984

    Article  PubMed  CAS  Google Scholar 

  12. Rooij E van, Sutherland LB, Thatcher JE et al (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A 105:13027–13032

    Article  PubMed Central  PubMed  Google Scholar 

  13. Duisters RF, Tijsen AJ, Schroen B et al (2009) miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 104:170–178 (6p following 178)

    Article  PubMed  CAS  Google Scholar 

  14. Abonnenc M, Nabeebaccus AA, Mayr U et al (2013) Extracellular Matrix Secretion by Cardiac Fibroblasts: Role of MicroRNA-29b and MicroRNA-30c. Circ Res 113:1138–1147

    Article  PubMed  CAS  Google Scholar 

  15. Zhao Y, Ransom JF, Li A et al (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129:303–317

    Article  PubMed  CAS  Google Scholar 

  16. Costa Martins PA da, Bourajjaj M, Gladka M et al (2008) Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation 118:1567–1576

    Article  CAS  Google Scholar 

  17. Rao PK, Toyama Y, Chiang HR et al (2009) Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res 105:585–594

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Zampetaki A, Willeit P, Tilling L et al (2012) Prospective study on circulating MicroRNAs and risk of myocardial infarction. J Am Coll Cardiol 60:290–299

    Article  PubMed  CAS  Google Scholar 

  19. Widera C, Gupta SK, Lorenzen JM et al (2011) Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol 51:872–875

    Article  PubMed  CAS  Google Scholar 

  20. Krutzfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    Article  PubMed  CAS  Google Scholar 

  21. Lennox KA, Behlke MA (2011) Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther 18:1111–1120

    Article  PubMed  CAS  Google Scholar 

  22. Rooij E van (2011) The art of microRNA research. Circ Res 108:219–234

    Article  PubMed  CAS  Google Scholar 

  23. Thum T (2012) MicroRNA therapeutics in cardiovascular medicine. EMBO Mol Med 4:3–14

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Liu G, Friggeri A, Yang Y et al (2010) miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 207:1589–1597

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Chau BN, Xin C, Hartner J et al (2012) MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med 4:121ra18

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Pan Z, Sun X, Shan H et al (2012) MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-beta1 pathway. Circulation 126:840–850

    Article  PubMed  CAS  Google Scholar 

  27. Ucar A, Gupta SK, Fiedler J et al (2012) The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 3:1078

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Costa Martins PA da, Salic K, Gladka MM et al (2010) MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nat Cell Biol 12:1220–1227

    Article  CAS  Google Scholar 

  29. Dirkx E, Gladka MM, Philippen LE et al (2013) Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nat Cell Biol 15:1282–1293

    Article  PubMed  CAS  Google Scholar 

  30. Bernardo BC, Gao XM, Winbanks CE et al (2012) Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc Natl Acad Sci U S A 109:17615–17620

    Article  PubMed Central  PubMed  Google Scholar 

  31. Boon RA, Iekushi K, Lechner S et al (2013) MicroRNA-34a regulates cardiac ageing and function. Nature 495:107–110

    Article  PubMed  CAS  Google Scholar 

  32. Fish JE, Santoro MM, Morton SU et al (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15:272–284

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Solingen C van, Seghers L, Bijkerk R et al (2009) Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med 13:1577–1585

    Article  PubMed  CAS  Google Scholar 

  34. Bonauer A, Carmona G, Iwasaki M (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324:1710–1713

    Article  PubMed  CAS  Google Scholar 

  35. Fiedler J, Jazbutyte V, Kirchmaier BC et al (2011) MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 124:720–730

    Article  PubMed  CAS  Google Scholar 

  36. Meloni M, Marchetti M, Garner K et al (2013) Local inhibition of microRNA-24 improves reparative angiogenesis and left ventricle remodeling and function in mice with myocardial infarction. Mol Ther 21:1390–1402

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Zhou Q, Anderson C, Zhang H et al (2013) Repression of choroidal neovascularization through actin cytoskeleton pathways by MicroRNA-24. Mol Ther doi:10.1038/mt.2013.243

    Google Scholar 

  38. Roncarati R, Anselmi CV, Losi MA et al (2013) Circulating miR-29a, Among other upregulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol doi:10.1016/j.jacc.2013.09.041

    Google Scholar 

  39. Devaux Y, Vausort M, McCann GP et al (2013) A panel of 4 microRNAs facilitates the prediction of left ventricular contractility after acute myocardial infarction. PLoS One 8:e70644

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Halkein J, Tabruyn SP, Ricke-Hoch M et al (2013) MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Invest 123:2143–2154

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Jaguszewski M, Osipova J, Ghadri JR et al (2013) A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction. Eur Heart J doi:10.1093/eurheartj/eht392

    Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. J. Fiedler, S. Batkai, and T. Thum receive support from IFB-Tx (BMBF 01EO0802; TT) and DFG TH 903/10–1 (TT). T. Thum and J. Fiedler state that they have filed patents in the field of cardiovascular miRNA diagnostics and therapeutics. The accompanying manuscript does not include studies on humans or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Thum MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiedler, J., Batkai, S. & Thum, T. MicroRNA-based therapy in cardiology. Herz 39, 194–200 (2014). https://doi.org/10.1007/s00059-013-4047-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-013-4047-0

Keywords

Schlüsselwörter

Navigation