Skip to main content
Log in

Individualisierung der Belastungssteuerung in der kardiologischen stationären Rehabilitation

Entwicklung und Evaluation eines HRV-gesteuerten Interventionsprogramms für Patienten mit ischämisch bedingter Herzinsuffizienz

Individualization of exercise load control for inpatient cardiac rehabilitation

Development and evaluation of a HRV-based intervention program for patients with ischemic heart failure

  • Originalarbeit
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die effektive Nutzung zur Verfügung stehender Rehabilitationsmaßnahmen ist von elementarer Bedeutung, um die Leistungsfähigkeit von Patienten zu verbessern. Unter diesen Gesichtspunkten ist ein modulares Interventionsprogramm entwickelt worden, das bestehende sporttherapeutische Maßnahmen neu strukturiert und an die individuellen Voraussetzungen der Patienten anpasst. Eine Individualisierung sollte auf Basis einer umfangreichen Eingangsdiagnostik und täglicher Messungen der Herzfrequenzvariabilität (HRV) gesichert werden.

Methode

Es wurden 30 Patienten mit ischämisch bedingter Herzinsuffizienz im Zeitraum der stationären Rehabilitation betreut. Die Interventionsgruppe (IG) absolvierte das modulare Interventionsprogramm. Die Kontrollgruppe (KG) nutzte die standardüblichen Rehabilitationsangebote. Im Prä-Post-Vergleich wurden eine Spiroergometrie sowie ein Sechsminutengehtest (6-MWT) durchgeführt. Standardisierte 10-minütige HRV-Ruhemessungen fanden morgens statt. Das Trainingsprogramm wurde den Ergebnissen der Eingangsdiagnostik und der HRV-Analyse entsprechend individuell angepasst.

Ergebnisse

Die IG steigerte die relative maximale Sauerstoffaufnahme (VO2max) hochsignifikant, wogegen sich diese bei der KG nicht änderte. Trainingsbegleitende Analysen zeigten, dass die IG sich statistisch bedeutsam verbesserte, obwohl sie weniger Ausdauertrainingseinheiten absolvierte als die KG.

Diskussion

Die Ergebnisse belegen die höhere Effektivität des Interventionsprogramms. Die Resultate unterstreichen, dass Rehabilitationsprogramme nicht als maximale Leistungsmatrix gestaltet werden sollten. Vielmehr sollte jeder Patient nur die Maßnahmen durchführen, für die nach Eingangsdiagnostik und therapiebegleitenden Analysen Bedarf besteht.

Abstract

Background

The effective use of rehabilitation programs is of primary importance in order to improve the physical performance of cardiac disease patients. A modular program has been developed which is intended to structure and individualize conventional, exercise-based rehabilitation programs according to the individual needs and physical condition of each patient. The individualization of the program is based on detailed diagnostics before patients enter the program and daily measurements of heart rate variability (HRV) during cardiac rehabilitation.

Methods

A total of 30 patients with ischemic heart disease were randomly assigned either to the intervention group (IG), completing the modular individualized rehabilitation program [n=15, mean age 54.4±4.2 years and mean left ventricular ejection fraction (LVEF) 28.53±6.25%) or to the control group (CG) taking part in the conventional rehabilitation program (n=15, mean age 56.4±4.4 years and mean LVEF 27.63±5.62). Before and after the intervention, cardiorespiratory fitness was assessed by measurement of maximal oxygen consumption (relative VO2max) during bicycle ergometry and the 6-minute walk test (6-MWT). Pre-post comparisons of cardiorespiratory fitness indicators were used to evaluate the effectiveness of the rehabilitation program. In addition to the results of the basic clinical investigations and the cardiorespiratory testing, results of standardized HRV measurements of 10 min at morning rest served as criteria for program individualization.

Results

The relative VO2max increased significantly (p<0.05) in the IG whereas no change was found in the CG. Similar results were found for maximum power output during bicycle ergometry (p<0.01) and for 6-MWT distance (p<0.001). Although patients in the IG completed less aerobic exercise sessions than those in the CG (p<0.001) the physical performance of the IG improved significantly.

Discussion

The results prove the effectiveness and efficacy of the modular individualized rehabilitation program. They further suggest the need for an individual program matrix instead of a maximum performance matrix in cardiac rehabilitation. Individualization should be based on clinical and performance diagnostics before and accompanying assessments of training condition, e.g. by HRV measurements, during rehabilitation programs. Each patient should only perform those intervention programs which match the results of the basic clinical investigation and additional analyses during rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Statistisches Bundesamt (2011) Gesundheit im Alter. https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/Gesundheit/Todesursachen/Tabellen/SterbefaelleInsgesamt.html

  2. Mosterd A, Hoes AW (2007) Clinical epidemiology of heart failure. Heart 93:1137–1146

    Article  PubMed Central  PubMed  Google Scholar 

  3. Neumann T, Biermann J, Neumann A et al (2009) Herzinsuffizienz: Häufigster Grund für Krankenhausaufenthalte – Medizinische und ökonomische Aspekte. Dtsch Arztebl Int 106(16):269–275

    PubMed Central  PubMed  Google Scholar 

  4. Sozialgesetzbuch (SGB), Neuntes Buch (IX) – Rehabilitation und Teilhabe behinderter Menschen (Stand 2012). http://www.sozialgesetzbuch-sgb.de/sgbix/1.html

  5. Zillessen E (1997) Klinische Rehabilitation quo vadis? Chance aus der Krise? Vortrag anläßlich der Jahrestagung der Gesellschaft für Rehabilitation bei Verdauungs- und Stoffwechselkrankheiten, Bad Mergentheim

  6. Heran BS, Chen JMH, Ebrahim S et al (2011) Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev (7):CD001800

    Google Scholar 

  7. Taylor RS, Brown A, Ebrahim S et al (2004) Exercise-based rehabilitation for patients with coronary heart disease: systematic review and metaanalysis of randomized controlled trials. Am J Med 116(10):682–692

    Article  PubMed  Google Scholar 

  8. Adamopoulos S, Parissis J, Karatzas D et al (2002) Physical training modulates proinflammatory cytokines and the soluble Fas/soluble Fas ligand system in patients with chronic heart failure. J Am Coll Cardiol 39(4):653–663

    Article  CAS  PubMed  Google Scholar 

  9. Hambrecht R (2002) Belastung und Belastbarkeit bei chronischer Herzinsuffizienz. Herz 27(2):179–186

    Article  PubMed  Google Scholar 

  10. Keck M, Lowis H (2004) Einfluss eines kombinierten Ausdauer- und Krafttrainings bei fortgeschrittener Herzinsuffizienz. Herzmedizin 21(2):70–76

    Google Scholar 

  11. Smart N, Marwick TH (2004) Exercise training for patients with heart failure: a systematic review of factors that improve mortality and morbidity. Am J Med 116(10):693–706

    Article  PubMed  Google Scholar 

  12. Smart NA, Haluska B, Jeffriess L, Leung D (2012) Exercise training in heart failure with preserved systolic function: a randomized controlled trial of the effects on cardiac function and functional capacity. Congest Heart Fail 18(6):295–301

    Article  PubMed  Google Scholar 

  13. Stolen K (2003) Exercise training improves biventricular oxidative metabolism and left ventricular efficiency in patients with dilated cardiomyopathy. J Am Coll Cardiol 41(3):460–467

    Article  CAS  PubMed  Google Scholar 

  14. Corrà U, Giannuzzi P, Adamopoulos S (2005) Executive summary of the position paper of the Working Group on Cardiac Rehabilitation and Exercise Physiology of the European Society of Cardiology (ESC): core components of cardiac rehabilitation in chronic heart failure. Eur J Cardiovasc Prev Rehabil 12(4):321–325

    Article  PubMed  Google Scholar 

  15. Fernhall B (2013) Long-term aerobic exercise maintains peak VO2, improves quality of life, and reduces hospitalisations and mortality in patients with heart failure. Neth Heart J 21(2):85–90

    Article  Google Scholar 

  16. Bjarnason-Wehrens B, Böthig S, Brusis O et al (2004) Herzgruppe. Positionspapier der DGPR. Z Kardiol 93:839–847

    Article  Google Scholar 

  17. Deutsche Gesellschaft für Prävention und Rehabilitation von Herz-Kreislauferkrankungen e. V. (DGPR) (2000) Empfehlungen zu Standards der Prozessqualität in der kardiologischen Rehabilitation (Teil 1). Herz Kreislauf 32:141–145

    Google Scholar 

  18. Pina IL, Apstein CS, Balady GJ et al (2003) Exercise and heart failure: a statement from the American Heart Association Commitee on exercise, rehabilitation and prevention. Circulation 107(8):1210–1225

    Article  PubMed  Google Scholar 

  19. Iwasaki K, Zhang R, Zuckerman JH, Levine BD (2003) Dose-response relationship of the cardiovascular adaptation to endurance training in healthy adults: how much training for what benefit? J Appl Physiol 95(4):1575–1583

    Article  PubMed  Google Scholar 

  20. Tourpouzidis A (2004) Über die Problematik der Trainingssteuerung in der stationären kardiologischen Rehabilitation. B & G 20(1):18–21

  21. Berbalk A, Neumann G (2003) Schwellendiagnostik in den Ausdauersportarten auf der Grundlage der Herzfrequenzvariabilität. In: Engelhardt M, Franz B, Neumann G, Pfützner A (Hrsg) 16. und 17. Internationales Triathlon-Symposium: Regensburg 2001 und Bad Segeberg 2002. Feldhaus, Hamburg, S 63–73

  22. Hottenrott K, Haubold T (2006) Individuelle Beanspruchungskontrolle mit der Herzfrequenzvariabilität bei über 40jährigen Radsportlern. In: Hottenrott K (Hrsg) Herzfrequenzvariabilität: Methoden und Anwendungen in Sport und Medizin. Czwalina, Hamburg, S 260–274

  23. Ades PA, Savage PD, Brawner CA et al (2006) Aerobic capacity in patients entering cardiac rehabilitation. Circulation 113(23):2706–2712

    Article  PubMed  Google Scholar 

  24. Karmisholt K, Gotzsche PC (2005) Physical activity for secondary prevention of disease. Systematic reviews of randomised clinical trials. Dan Med Bull 52(2):90–94

    PubMed  Google Scholar 

  25. Rees K, Taylor RS, Singh S et al (2004) Exercise based rehabilitation for heart failure. Cochrane Database Syst Rev (3):CD003331

    Google Scholar 

  26. Piepoli MF(2012) Exercise training in chronic heart failure: mechanisms and therapies. Neth Heart J 21(2):85–90

    Article  PubMed Central  Google Scholar 

  27. Meyer P, Gayda M, Juneau M, Nigam A (2013) High-intensity aerobic interval exercise in chronic heart failure. Curr Heart Fail Rep 10(8):130–138

    Article  PubMed  Google Scholar 

  28. Haykowsky MJ, Timmons MP, Kruger C et al (2013) Meta-analysis of aerobic interval training on exercise capacity and systolic function in patients with heart failure and reduced ejection fractions. Am J Cardiol 111(10):1466–1469

    Article  PubMed  Google Scholar 

  29. Tyni-Lenne R, Gordon A, Jannson E (1997) Skeletal muscle endurance training improves peripheral oxidative capacity, exercise tolerance, and health-related quality of life in women with chronic heart failure secondary to either ischaemic cardiomyopathy or idiopathic dilated cardiomyopathy. Am J Cardiol 80(8):1025–1029

    Article  CAS  PubMed  Google Scholar 

  30. Meyer K, Hajric R, Westbrook S et al (1999) Hemodynamic responses during leg press exercise in patients with chronic congestive heart failure. Am J Cardiol 83(11):1537–1543

    Article  CAS  PubMed  Google Scholar 

  31. Laoutaris ID, Adamopoulos S, Manginas A (2012) Benefits of combined aerobic/resistance/inspiratory training in patients with chronic heart failure. A complete exercise model? A prospective randomised study. Int J Cardiol 167(5):1969–1972

    Google Scholar 

  32. Uusitalo AL, Laitinen T, Väisänen E et al (2002) Effects of endurance training on heart rate and blood pressure variability. Clin Physiol Funct Imaging 22(3):173–179

    Article  PubMed  Google Scholar 

  33. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd ed. Lawrence Erlbaum Associates, Hillsdale

  34. Guyatt GH, Sullivan MJ, Thompson PJ et al (1985) The 6-minute walk: a new measure of exercise capacity in patients with chronic heart failure. Can Med Assoc J 132(8):919–923

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Forman DE, Fleg JL, Kitzman DW et al (2012) 6-min walk test provides prognostic utility comparable to cardiopulmonary exercise testing in ambulatory outpatients with systolic heart failure. J Am Coll Cardiol 60(25):2653–2661

    Article  PubMed Central  PubMed  Google Scholar 

  36. Löllgen H, Erdmann H (2000) Ergometrie. Belastungsuntersuchungen in Klinik und Praxis, 2. Aufl. Springer, Berlin

  37. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93(5):1043–1065

    Article  Google Scholar 

  38. Niskanen JP, Tarvainen MP, Ranta-Aho PO, Karjalainen PA (2004) Software for advanced HRV analysis. Comput Methods Programs Biomed 76(1):73–81

    Article  PubMed  Google Scholar 

  39. Hollmann W, Hettinger T (2000) Sportmedizin – Grundlagen für Arbeit, Training und Präventivmedizin, 4 Aufl. Schattauer, Stuttgart

  40. Sullivan MJ, Green HJ, Cobb FR (1990) Skeletal muscle biochemistry and histology in ambulatory patients with long-term heart failure. Circulation 81(2):518–527

    Article  CAS  PubMed  Google Scholar 

  41. Simonini A, Long CS, Dudley GA et al (1996) Heart failure in rats causes changes in skeletal muscle morphology and gene expression that are not explained by reduced activity. Circ Res 79(1):128–136

    Article  CAS  PubMed  Google Scholar 

  42. Mancini DM, Coyle E, Coggan A et al (1989) Contribution of intrinsic skeletal muscle changes to 31P NMR skeletal muscle metabolic abnormalities in patients with chronic heart failure. Circulation 80(5):1338–1346

    Article  CAS  PubMed  Google Scholar 

  43. Okita K, Yonezaw K, Nishijima H et al (1998) Skeletal muscle metabolism limits exercise capacity in patients with chronic heart failure. Circulation 98(18):1886–1891

    Article  CAS  PubMed  Google Scholar 

  44. Opasich C, Pinna GD, Mazza A et al (2001) Six-minute walking performance in patients with moderate-to-severe heart failure; is it a useful indicator in clinical practice? Eur Heart J 22(6):488–496

    Article  CAS  PubMed  Google Scholar 

  45. Weber KT, Janicki JS (1985) Cardiopulmonary exercise testing for evaluation of chronic cardiac failure. Am J Cardiol 55(2):22A–31A

    Article  CAS  PubMed  Google Scholar 

  46. Pollock ML, Franklin BA, Balady GJ et al (2000) AHA Science Advisory. Resistance exercise in individuals with and without cardiovascular disease: benefits, rationale, safety, and prescription: An advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association; Position paper endorsed by the American College of Sports Medicine. Circulation 101(7):828–833

    Article  CAS  PubMed  Google Scholar 

  47. Wang HM, Huang SC (2012) SDNN/RMSSD as a surrogate for LF/HF: a revised investigation. Modelling and Simulation in Engineering, Vol. 2012, Article ID 931943

  48. Tarkiainen TH, Timonen KL, Tiittanen P et al (2005) Stability over time of short-term heart rate variability. Clin Auton Res 15(6):394–399

    Article  PubMed  Google Scholar 

  49. Curic A, Männer H, Meißner S, Morawetz F (2007) Untersuchung zur Herzratenvariabilität unter Stress- und Entspannungs-Bedingung. Universität Regensburg (unveröffentlichtes Manuskript)

  50. Löllgen H, Löllgen D (2012) Risikoreduktion kardiovaskulärer Erkrankungen durch körperliche Aktivität. Internist 53(1):20–29

    Article  PubMed  Google Scholar 

  51. Schwarz S, Halle M (2013) From rest to run – make your heart failure patients exercise for a long life. MMW Fortschr Med 155(4):48–50

    Article  PubMed  Google Scholar 

  52. Piepoli MF, Conraads V, Corra U et al (2011) Exercise training in heart failure: from theory to practice. A consensus document of the Heart Failure Association and the European Association for Cardiovascular Prevention and Rehabilitation. Eur J Heart Fail 13(4):347–357

    Article  PubMed  Google Scholar 

  53. Ades PA, Keteyian SJ, Balady GJ et al (2013) Cardiac rehabilitation exercise and self-care for chronic heart failure. JACC Heart Failure 1(6): 540–547

    Article  PubMed Central  PubMed  Google Scholar 

  54. Totzeck M, Predel HG (2012) Sport und Herz – aktuelle Aspekte. Dtsch Med Wochenschr 137(49):2563–2566

    Article  CAS  PubMed  Google Scholar 

  55. Tai MK, Meininger JC, Frazier LQ (2008) A systematic review of exercise interventions in patients with heart failure. Biol Res Nurs 10(2):156–182

    Article  PubMed  Google Scholar 

  56. Oja P, Titze S, Bauman A et al (2011) Health benefits of cycling: a systematic review. Scand J Med Sci Sports 21:496–509

    Article  CAS  PubMed  Google Scholar 

  57. Koch B, Steinacker JM (2011) Überlastung und Übertrainingssyndrom. In: Graf C (Hrsg) Lehrbuch Sportmedizin. Basiswissen, präventive, therapeutische und besondere Aspekte, 2. Aufl. Deutscher Ärzte-Verlag, Köln, S 124–136

  58. Belardinelli R, Georgiou D, Ginzton L et al (1998) Effects of moderate exercise training on thallium uptake and contractile response to low-dose dobutamine of dysfunctional myocardium in patients with ischemic cardiomyopathy. Circulation 97(6):553–561

    Article  CAS  PubMed  Google Scholar 

  59. Grosse T, Kreulich K, Nägele H et al (2001) Peripheres Muskelkrafttraining bei schwerer Herzinsuffizienz. Dtsch Z Sportmed 52(1):11–14

    Google Scholar 

  60. Kiilavuori K, Näveri H, Ikonen T et al (1996) Effects of physical training on exercise capacity and gas exchange in patients with chronic heart failure. Chest 110(4):985–991

    Article  CAS  PubMed  Google Scholar 

  61. Kuppardt H, Jeschke D, Stein P (2003) Die Verbesserung der körperlichen Leistungsfähigkeit, eine wesentliche Therapiezielstellung in der klinischen Rehabilitation. Dtsch Z Sportmed 54(7/8):S48

    Google Scholar 

  62. Larsen A, Lindal S, Aukrust P et al (2002) Effect of exercise training on skeletal muscle fibre characteristics in men with chronic heart failure. Correlation between skeletal muscle alterations, cytokines and exercise capacity. Int J Cardiol 83(1):25–32

    Article  PubMed  Google Scholar 

  63. Bertram R, Cordes C, Schmidt S et al (2002) Trainings- und Schulungsmaßnahmen bei schwerer chronischer Herzinsuffizienz. Erfahrungen und Umsetzung in der Praxis. Med Klin 97(2):57–62

    Article  Google Scholar 

  64. Enright PL, Sherrill DL (1998) Reference equations for the six minute walk in healthy adults. Am J Respir Crit Care Med 158(5 Pt 1):1384–1387

    Article  CAS  PubMed  Google Scholar 

  65. Piepoli MF, Davos C, Francis DP (2004) Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH). BMJ 328(7433):189

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. K. Behrens, K. Hottenrott, M. Weippert, H. Montanus, S. Kreuzfeld, A. Rieger, J. Lübke, K. Werdan und R. Stoll geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Behrens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrens, K., Hottenrott, K., Weippert, M. et al. Individualisierung der Belastungssteuerung in der kardiologischen stationären Rehabilitation. Herz 40 (Suppl 1), 61–69 (2015). https://doi.org/10.1007/s00059-013-4037-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-013-4037-2

Schlüsselwörter

Keywords

Navigation