Skip to main content
Log in

PCSK9 als neues Target in der Therapie der Hypercholesterinämie

PCSK9 as new target in hyperlipidemia treatment

  • Übersichtsarbeit
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Proproteinkonvertase Subtilisin/Kexin-Typ 9 (PCSK9) reguliert durch Degradation des LDL-Rezeptors das Serum-LDL-Cholesterin. „Loss-of-function“-PCSK9-Mutationen resultieren in sehr niedrigen LDL-Cholesterin-Serumspiegeln und schützen vor kardiovaskulären Erkrankungen, wohingegen „Gain-of-function“-Mutationen das Serum-LDL-Cholesterin erhöhen. In-vitro- und In-vivo-Experimente zeigen, dass Antikörper gegen PCSK9 eine neue Therapieoption bei kardiovaskulären Patienten darstellen könnten. Dieser Beitrag fasst die Biochemie und die Funktion von PCSK9 sowie die Ergebnisse kürzlich publizierter Phase-II-Studien zusammen.

Abstract

Proprotein convertase subtilisin/kexin type 9 (PCSK 9) is a key regulator of cholesterol homeostasis acting via degradation of the low density lipoprotein (LDL) receptor. Loss of function PCSK 9 mutations result in very low LDL cholesterol serum levels and protection from cardiovascular disease whereas gain of function mutations increase serum LDL cholesterol. Based on in vitro and in vivo data antibodies targeting PCSK 9 have now emerged as a novel treatment option in patients with cardiovascular disease. This review briefly summarizes the biochemistry and function of PCSK9 and the results from recent phase II trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Abifadel M, Rabes JP, Devillers M et al (2009) Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum Mutat 30:520–529

    Article  CAS  PubMed  Google Scholar 

  2. Abifadel M, Varret M, Rabes JP et al (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34:154–156

    Article  CAS  PubMed  Google Scholar 

  3. Baigent C, Blackwell L, Emberson J et al (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376:1670–1681

    Article  PubMed  Google Scholar 

  4. Brown MS, Goldstein JL (1999) A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A 96:11041–11048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Careskey HE, Davis RA, Alborn WE et al (2008) Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9. J Lipid Res 49:394–398

    Article  CAS  PubMed  Google Scholar 

  6. Cariou B, Le May C, Costet P (2011) Clinical aspects of PCSK9. Atherosclerosis 216:258–265

    Article  CAS  PubMed  Google Scholar 

  7. Chretien M, Li CH (1967) Isolation, purification, and characterization of gamma-lipotropic hormone from sheep pituitary glands. Can J Biochem 45:1163–1174

    Article  CAS  PubMed  Google Scholar 

  8. Cohen JC, Boerwinkle E, Mosley TH Jr et al (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354:1264–1272

    Article  CAS  PubMed  Google Scholar 

  9. Denis M, Marcinkiewicz J, Zaid A et al (2011) Gene inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation 125:894–901

    Article  Google Scholar 

  10. Dubuc G, Chamberland A, Wassef H et al (2004) Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 24:1454–1459

    Article  CAS  PubMed  Google Scholar 

  11. Graham MJ, Lemonidis KM, Whipple CP et al (2007) Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J Lipid Res 48:763–767

    Article  CAS  PubMed  Google Scholar 

  12. Horton JD, Cohen JC, Hobbs HH (2007) Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci 32:71–77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Koenig W, Marx N, Thiery J, Klose G (2012) Kommentar zu den neuen Leitlinien (2011) der Europäischen Gesellschaft für Kardiologie zum Management von Dyslipidämien. Kardiologe 6:201–216

    Article  Google Scholar 

  14. Koren MJ, Scott R, Kim JB et al (2012) Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 as monotherapy in patients with hypercholesterolaemia (MENDEL): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet 380:1995–2006

    Article  CAS  PubMed  Google Scholar 

  15. Marduel M, Carrie A, Sassolas A et al (2010) Molecular spectrum of autosomal dominant hypercholesterolemia in France. Hum Mutat 31:E1811–E1824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Maxwell KN, Breslow JL (2004) Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc Natl Acad Sci U S A 101:7100–7105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. McNutt MC, Lagace TA, Horton JD (2007) Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells. J Biol Chem 282:20799–20803

    Article  CAS  PubMed  Google Scholar 

  18. Park SW, Moon YA, Horton JD (2004) Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J Biol Chem 279:50630–50638

    Article  CAS  PubMed  Google Scholar 

  19. Raal F, Scott R, Somaratne R et al (2012) Low-density lipoprotein cholesterol-lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the Reduction of LDL-C with PCSK9 Inhibition in Heterozygous Familial Hypercholesterolemia Disorder (RUTHERFORD) randomized trial. Circulation 126:2408–2417

    Article  CAS  PubMed  Google Scholar 

  20. Reiner Z, Catapano AL, De Backer G et al (2011) ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J 32:1769–1818

    Article  PubMed  Google Scholar 

  21. Roth EM, McKenney JM, Hanotin C et al (2012) Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N Engl J Med 367:1891–1900

    Article  CAS  PubMed  Google Scholar 

  22. Sakai J, Rawson RB, Espenshade PJ et al (1998) Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol Cell 2:505–514

    Article  CAS  PubMed  Google Scholar 

  23. Seidah NG, Benjannet S, Wickham L et al (2003) The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci U S A 100:928–933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Seidah NG, Mowla SJ, Hamelin J et al (1999) Mammalian subtilisin/kexin isozyme SKI-1: a widely expressed proprotein convertase with a unique cleavage specificity and cellular localization. Proc Natl Acad Sci U S A 96:1321–1326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Seidah NG, Prat A (2012) The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov 11:367–383

    Article  CAS  PubMed  Google Scholar 

  26. Silva MA, Swanson AC, Gandhi PJ et al (2006) Statin-related adverse events: a meta-analysis. Clinical Therapeutics 28:26–35

    Article  CAS  PubMed  Google Scholar 

  27. Stawowy P, Fleck E (2005) Proprotein convertases furin and PC5: targeting atherosclerosis and restenosis at multiple levels. J Mol Med 83:865–875

    Article  CAS  PubMed  Google Scholar 

  28. Steiner DF (1967) Evidence for a precursor in the biosynthesis of insulin. Trans N Y Acad Sci 30:60–68

    Article  CAS  PubMed  Google Scholar 

  29. Sullivan D, Olsson AG, Scott R et al (2012) Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. JAMA 308:2497–2506

    Article  CAS  PubMed  Google Scholar 

  30. Waters DD, Brotons C, Chiang CW et al (2009) Lipid treatment assessment project 2: a multinational survey to evaluate the proportion of patients achieving low-density lipoprotein cholesterol goals. Circulation 120:28–34

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. P. Stawowy und E. Fleck geben an, klinische Studien mit Amgen durchzuführen. S. Kelle gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Stawowy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stawowy, P., Kelle, S. & Fleck, E. PCSK9 als neues Target in der Therapie der Hypercholesterinämie. Herz 39, 466–469 (2014). https://doi.org/10.1007/s00059-013-3913-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-013-3913-0

Schlüsselwörter

Keywords

Navigation