Skip to main content
Log in

Adipositas und kardiale Kachexie bei chronischer Herzinsuffizienz

Obesity and cardiac cachexia in chronic heart failure

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Sowohl das Phänomen „obesity paradox“ als auch insbesondere die kardiale Kachexie bei Herzinsuffizienz sind bis heute Gegenstand intensiver Forschung hinsichtlich zugrunde liegender Pathomechanismen und möglicher Therapieansätze. Die Adipositas ist ein etablierter Risikofaktor in der Entwicklung kardiovaskulärer Erkrankungen und ist mit einer erhöhten Mortalität assoziiert. Im Gegensatz dazu scheint Übergewicht bei herzinsuffizienten Patienten im Vergleich zu Normalgewichtigen mit einem Überlebensvorteil einherzugehen – ein Phänomen, welches auch als „obesity paradox“ bekannt ist. In den letzten Jahren ist die Kachexie als Komorbidität chronischer Erkrankungen wie Herzinsuffizienz, COPD, Karzinomen oder Niereninsuffizienz in den Fokus wissenschaftlichen Interesses gerückt. Da Kachexie mit einer deutlich ungünstigeren Prognose assoziiert ist, sind eine frühe Diagnose und gut wirksame Behandlungskonzepte von enormer Wichtigkeit. Ziel dieses Reviews ist es, einen aktuellen Überblick über die Pathomechanismen und erfolgversprechende Behandlungsmöglichkeiten zu geben.

Abstract

Obesity as well as cardiac cachexia in heart failure patients are not fully understood and therefore of high scientific interest. Obesity as a common risk factor for cardiovascular disease is associated with a high mortality. In contrast obesity in patients suffering from chronic heart failure seems to be accompanied with a favorable outcome in contrast to people with normal weight, known as the obesity paradox. In the last decade there has been growing interest in cachexia, which is common in advanced stages of chronic diseases, such as heart failure, chronic obstructive pulmonary disease (COPD), cancer and renal failure and is associated with a poor prognosis. Until now cachexia has been underdiagnosed and undertreated. This review discusses the complex underlying pathomechanisms as well as potential therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Franks PW, Hanson RL, Knowler WC et al (2010) Childhood obesity, other cardiovascular risk factors and premature death. N Engl J Med 362:485–493

    PubMed  CAS  Google Scholar 

  2. Kenchaiah S, Evans JC, Levy D et al (2002) Obesity and risk of heart failure. N Engl J Med 347:305–313

    PubMed  Google Scholar 

  3. He J, Ogden LG, Bazzano LA et al (2001) Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up-study. Arch Intern Med 161:996–1002

    PubMed  CAS  Google Scholar 

  4. Loehr LR, Rosamond WD, Poole C et al (2009) The association of multiple anthropometics of overweight and obesity with incident heart failure: the Atherosclerosis Risk in Communities (ARIC) Study. Circ Heart Fail 2(1):18–24

    PubMed  Google Scholar 

  5. Kalantar-Zadeh K, Block G, Horwich T, Fonarow GC (2004) Reverse epidemiology of conventional cardiovascular risk factors in patients with chronic heart failure. J Am Coll Cardiol 43:1439–1444

    PubMed  Google Scholar 

  6. Lavie CJ, Mehra MR, Milani RV (2005) Obesity and heart failure prognosis: paradox or reverse epidemiology? Eur Heart J 26:5–7

    PubMed  Google Scholar 

  7. Horwich TB, Fonarow GC, Hamilton MA, MacLellan WR (2001) The relationship between obesity and mortality in patients with heart failure. J Am Coll Cardiol 38:789–795

    PubMed  CAS  Google Scholar 

  8. Lainscak M, Haehling S von, Doehner W, Anker SD (2012) The obesity paradox in chronic disease: facts and numbers. J Cachexia Sarcopenia Muscle 3:1–4

    PubMed  Google Scholar 

  9. Gustafsson F, Kragelund CB, Torp-Pedersen C et al (2005) Effect of obesity and being overweight on long-term mortality in congestive heart failure: influence of left ventricular systolic function. Eur Heart J 26: 58–64

    PubMed  Google Scholar 

  10. McMurray JJV, Carson PE, Komajda M et al (2008) Heart failure with preserved ejection fraction: clinical characteristics of 4133 patients enrolled in the I-PRESERVED trial. Eur J Heart Fail10:149–156

    Google Scholar 

  11. Oreopoulos A, Padwal R, Kalantar-Zadeh K et al (2008) Body mass index and mortality in heart failure: a meta-analysis. Am Heart J 156(1):13–22

    PubMed  Google Scholar 

  12. Oreopoulos A, Ezekowitz JA, McAlister FA et al (2010) Association between direct measures of body composition and prognostic factors in chronic heart failure. Mayo Clin Proc 85(7):609–617

    PubMed  Google Scholar 

  13. Kalantar-Zadeh K, Streja E, Kovedsy CP et al (2010) The obesity paradox and mortality associated with surrogates of body size and muscle mass in patients receiving hemodialysis. Mayo Clin Proc 85(11):991–1001

    PubMed  CAS  Google Scholar 

  14. Younge JO, Damen NL, Domburg RT van, Pedersen SS (2012) Obesity, health status and 7-year mortality in percutaneus coronary intervention: in search of an explanation for the obesity paradox. Int J Cardiol [Epub ahead of print]

  15. Doehner W, Erdmann E, Cairns R et al (2011) Inverse relation of body weight change in mortality and morbidity in patients with type 2 diabetes and cardiovascular co-morbidity: an analysis of the PROactive study population. Int J Cardiol 162(1):20–26

    PubMed  Google Scholar 

  16. Doehner W, Anker SD (2002) Cardiac cachexia in early literature: a review of research prior to Medline. Int J Cardiol 85:7–14

    PubMed  Google Scholar 

  17. Katz AM, Katz PB (1962) Diseases oft he heart in the work of Hippokrates. Br Heart J 24:257–264

    PubMed  CAS  Google Scholar 

  18. Anker SD, Sharma R (2002) The syndrome of cardiac cachexia. Int J Cardiol 85:51–66

    PubMed  Google Scholar 

  19. Anker SD, Chua TP, Ponokowski P et al (1997) Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation 96:526–534

    PubMed  CAS  Google Scholar 

  20. Anker SD, Ponikowski P, Varney S et al (1997) Wasting as independant risk factor for mortality in chronic heart failure. Lancet 349:1050–1053

    PubMed  CAS  Google Scholar 

  21. Anker SD, Steinborn W, Strasburg S (2004) Cardiac cachexia. Ann Med 36:518–529

    PubMed  Google Scholar 

  22. Von Haeling S, Anker SD (2010) Cachexia as a major underestimated and unmet medical need: facts and numbers. J Cachexia Sarcopenia Muscle 1:1–5

    Google Scholar 

  23. Evans WJ, Morley JE, Argilés J et al (2008) Cachexia: a new definition. Clin Nutr 27:793–799

    PubMed  CAS  Google Scholar 

  24. Muscaritoli M, Anker SD, Argilés J et al (2010) Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) „cachexia-anorexia in chronic wasting diseases“ and „nutrition in geriatrics“. Clin Nutr 29:154–159

    PubMed  CAS  Google Scholar 

  25. Anker SD, Haehling S von (2004) Inflammatory mediators in chronic heart failure: an overview. Heart 90:464–470

    PubMed  CAS  Google Scholar 

  26. Anker SD, Ponikowski P, Clark AL et al (1999) Cytokines and neurohormones relating to body composition alterations in the wasting syndrome of chronic heart failure. Eur Heart J 20:683–689

    PubMed  CAS  Google Scholar 

  27. Anker SD, Sharma R (2002) The syndrome of cardiac cachexia. Int J Cardiol 85:51–66

    PubMed  Google Scholar 

  28. Torre Amione G, Kapadia S, Lee J et al (1996) Tumor necrosis factor alpha and tumor necrosis factor receptors in the failing human heart. Circulation 93:704–711

    Google Scholar 

  29. Kotanko P, Carter M, Levin NW (2006) Intestinal bacterial microflora – a potential source of chronic inflammation in patients with chronic kidney disease. Nephrol Dial Transplant 21:2057–2060

    PubMed  Google Scholar 

  30. Genth-Zotz S, Haeling S von, Bolger AP et al (2002) Pathophysiologic quantities of endotoxin-induced tumor necrosis factor-alpha release in whole blood from patients with chronic heart failure. Am J Cardiol 90:1226–1230

    PubMed  CAS  Google Scholar 

  31. Kubotera N, Prokopienko AJ, Garba AO, Pai AB (2013) Endotoxin binding by Sevelamer: potential impact on nutritional status. Int J of Nephrol 2013:954956

    Google Scholar 

  32. Levine B, Kalmann J, Mayer L et al (1990) Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 323:236–241

    PubMed  CAS  Google Scholar 

  33. Hilt W (2005) Das Ubiquitin-Proteasom-System in Proteinqualitätskontrolle und Regulation. Biospektrum 4:446–449

    Google Scholar 

  34. Portbury Al, Ronnebaum SM, Zungu M et al (2012) Back to the heart: ubiquitin proteasome system- regulated signal transduction. J Mol Cell Cardiol 52(3):526–537

    PubMed  CAS  Google Scholar 

  35. Kung T, Szabó T, Springer J et al (2011) Cachexia in heart disease: highlights from ESC 2010. J Cachexia Sarcopenia Muscle 2:63–69

    PubMed  Google Scholar 

  36. Lenk K, Schuler G, Adams V (2010) Skelatal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle 1:9–21

    PubMed  Google Scholar 

  37. Mitch WE, Goldberg AL (1996) Mechanisms of muscle wasting. The role oft the ubiquitine-proteasome pathway. N Engl J Med 335:1897–1905

    PubMed  CAS  Google Scholar 

  38. Hasselgren PO, Fischer JE (2001) Muscle cachexia: current concepts of intracellular mechanisms and molecular regulation. Ann Surg 233:9–17

    PubMed  CAS  Google Scholar 

  39. Slimani L, Dubost A, Meunier B et al (2011) During early recovery the worsening of immobilization-induced rat tibialis anterior muscle atrophy is associated with sustained activation of proteolytic and apoptotic pathways. J Cachexia Sarcopenia Muscle 2:209–261

    Google Scholar 

  40. Trobec K, Haehling S von, Anker SD, Lainscak M (2011) Growth hormone, insulin-like growth factor 1 and insulin signalling – a pharmacological target in body wasting and cachexia. J Cachexia Sarcopenia Muscle 2:191–200

    PubMed  Google Scholar 

  41. Higaki K, Matsumoto Y, Fujimoto R et al (1997) Pharmacokinetics of recombinant human insulin-like growth factor-I in diabetic rats. Drug Metab Dispos 25:1324–1327

    PubMed  CAS  Google Scholar 

  42. Ottosson M, Lönnroth P, Björntorp P, Edén S (2000) Effects of cortisol and growth hormone on lipolysis in human adipose tissue. J Clin Endocrinol Metab 85:355–360

    Google Scholar 

  43. Thomas SH, Wisher MH, Brandenburg D, Sönksen PH (1979) Evidence that the anti-liplytic and lipogenic effects of insulin are mediated by the same receptor. Biochem J 184:355–360

    PubMed  CAS  Google Scholar 

  44. Hambrecht R, Schulze PC, Gielen S et al (2005) Effects of exercise training on insulin-like growth factor-1 expression in the skeletal muscle of non-cachectic patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil 12:401–406

    PubMed  Google Scholar 

  45. Anker SD, Chua TP, Ponikowski P et al (1997) Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance in cardiac cachexia. Circulation 96:526–534

    PubMed  CAS  Google Scholar 

  46. Niebauer J, Pflaum CD, Clark AL et al (1998) Deficient insulin-like growth factor 1 in chronic heart failure predicts altered body composition, anabolic defiency, cytokine and neurohumoral activation. J Am Coll Cardiol 32:393–397

    PubMed  CAS  Google Scholar 

  47. Anker SD, Volterrani M, Pflaum CD et al (2001) Aquired growth hormone resistence in patients with chronic heart failure: implications for therapy with growth hormone. J Am Coll Cardiol 38:443–452

    PubMed  CAS  Google Scholar 

  48. Suskin N, McKelvie RS, Burns RJ et al (2000) Glucose and insulin abnormalities relate to functional capacity in patients with congestive heart failure. Eur Heart J 21:1368–1375

    PubMed  CAS  Google Scholar 

  49. Takala J, Ruokonen E, Webster NR et al (1999) Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med 341:785–792

    PubMed  CAS  Google Scholar 

  50. Brink M, Price SR, Chrast J et al (2001) Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insuline-like growth factor I. Endocrinology 142:1489–1496

    PubMed  CAS  Google Scholar 

  51. Anwar A, Gaspoz JM, Pampallona S et al (2002) Effect of congestive heart failure on the insulin-like growth factor-1 system. Am J Cardiol 90(12):1402–1405

    PubMed  CAS  Google Scholar 

  52. Brink M, Anwar A, Delafontaine P (2002) Neurohumoral factors in the development of catabolic/anabolic imbalance and cachexia. Int J of Cardiol 85:111–121

    Google Scholar 

  53. Song YH, Li Y, Du J et al (2005) Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting. J Clin Invest 115:451–458

    PubMed  CAS  Google Scholar 

  54. Kojima M, Hosoda H, Date Y et al (1999) Ghrelin is a growth-hormone-releasing peptide from stomach. Nature 402:656–660

    PubMed  CAS  Google Scholar 

  55. Wagner C, Caplan SR, Tannenbaum GS (2009) Interactions of ghrelin signaling pathways with the gH neuroendocrine axis: a new and experimentally tested model. J Mol Endocrinol 43:105–119

    PubMed  CAS  Google Scholar 

  56. Tschop M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407:908–913

    PubMed  CAS  Google Scholar 

  57. Nakazato M, Murakami N, Date Y et al (2001) A role for ghrelin in the central regulation of feeding. Nature 409:194–198

    PubMed  CAS  Google Scholar 

  58. Matsumura K, Tsuchihashi T, Fujii K et al (2002) Central ghrelin modulates sympathetic activity in conscious rabbits. Hypertension 40:694–699

    PubMed  CAS  Google Scholar 

  59. Nagaya N, Uematsu M, Kojima M et al (2001) Elevated circulating level of ghrelin in cachexia related chronic heart failure. Circulation 104:2034–2038

    PubMed  CAS  Google Scholar 

  60. Akamizu T, Kangawa K (2010) Ghrelin for cachexia. J Cachexia Sarcopenia Muscle 1:169–176

    PubMed  Google Scholar 

  61. Müller TD, Perez-Tilve D, Tong J et al (2010) Ghrelin and its potential in the treatment of eating/wasting disorders and cachexia. J Cachexia Sarcopenia Muscle 1:159–167

    PubMed  Google Scholar 

  62. Nagaya N, Uematsu M, Kojima M et al (2001) Chronic administration of ghrelin improves left ventricular dysfunction and attenuates developement of cardiac cachexia in rats with heart failure. Circulation 104:1430–1435

    PubMed  CAS  Google Scholar 

  63. Palus S, Schur R, Akashi YJ et al (2011) Ghrelin and its analogues, BIM-28131 and BIM-28125, improve body weight and regulate the expression of MuRF-1 and MAFbx in a rat heart failure model. PLoS One 6(11):e26865

    PubMed  CAS  Google Scholar 

  64. Halaas JL, Gajiwala KS, Maffei M et al (1995) Weight-reducing effects of plasma protein encoded by the obese gene. Science 269:543–546

    PubMed  CAS  Google Scholar 

  65. Engineer DR, Garcia JM (2012) Leptin in anorexia and cachexia syndrome. Int J Pept 2012:287457

    PubMed  Google Scholar 

  66. Doehner W, Pflaum CD, Rauchhaus M et al (2001) Leptin, insulin sensitivity and growth hormone binding protein in chronic heart failure with and without cardiac cachexia. Eur J Endocrinol 145:727–735

    PubMed  CAS  Google Scholar 

  67. Filippatos GS, Tsilias K, Venetsanou K et al (2000) Leptin serum levels in cachectic heart failure patients. Int J Cardiol 76:117–122

    PubMed  CAS  Google Scholar 

  68. McGaffin KR, Moravec CS, McTiernan CF (2009) Leptin signaling in the failing and mechanially unloaded human heart. Circulation 2:676–683

    PubMed  CAS  Google Scholar 

  69. Friedman JM (2010) A tale oft two hormones. Nat Med 16:1100–1106

    PubMed  CAS  Google Scholar 

  70. Koch C, Augustine RA, Steger J et al (2010) Leptin rapidly improves glucose homeostasis in obese mice by increasing hypothalamic insulin sensitivity. J Neurosci 30:16180–16187

    PubMed  CAS  Google Scholar 

  71. Friedman JM (2004) Modern science versus the stigma of obesity. Nat Med 10:563–569

    PubMed  CAS  Google Scholar 

  72. Mueller WM, Gregoire FM, Stanhope KL et al (1998) Evidence that glucose metabolism regulates leptin secretion from cultured rat adipocytes. Endocrinology 139:551–558

    PubMed  CAS  Google Scholar 

  73. Leroy P, Dessolin P, Villageois P et al (1996) Expression of ob gene in adipose cells. Regulation by insulin. J Biol Chem 271:2365–2368

    PubMed  CAS  Google Scholar 

  74. Van Berendoncks AM, Garnier A, Beckers P et al (2010) Functional adiponectin resistance at the level of the skeletal muscle in mild to moderate chronic heart failure. Circ Heart Fail 3:185–194

    Google Scholar 

  75. Pajvani UB, Hawkins M, Combs TP et al (2004) Complex distribution, not absolute amount of adiponectin, correlates with thiazolidine-mediated improvement in Insulin sensitivity. J Biol Chem 279:12152–12162

    PubMed  CAS  Google Scholar 

  76. Beatty AL, Zhang MH, Ku IA, Na B (2012) Adiponectin is associated with increased mortality and heart failure in patients with stable ischemic heart disease: data from the Heart and Soul Study. Atherosclerosis 220:587–592

    PubMed  CAS  Google Scholar 

  77. McMurray JJ, Adamopoulos S, Anker SD et al (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33:1787–1847

    PubMed  Google Scholar 

  78. De Maeyer C, Beckers P, Vrints CJ, Conraads VM (2013) Exercise training in chronic heart failure. Ther Adv Chronic Dis 4(3):105–117

    Google Scholar 

  79. Passino C, Severino S, Poletti R et al (2006) Aerobic training decreases B-type natriuretic peptide expression and adrenergic activation in patients with heart failure. J Am Coll Cardiol 47:1835–1839

    PubMed  CAS  Google Scholar 

  80. Conraads V, Beckers P, Bosmanns J et al (2002) Combined endurance/exercise training reduces plasma TNF alpha receptor levels in patients with chronic heart failure and coronary artery disease. Eur Heart J 23:1854–1860

    PubMed  CAS  Google Scholar 

  81. Ennezat P, Malendowicz S, Testa M et al (2001) Physical training in patients with chronic heart failure enhances the expression of genes encoding antioxidative enzymes. J Am Coll Cardiol 38:194–198

    PubMed  CAS  Google Scholar 

  82. Hambrecht R, Fiehn E, Weigl C, Gielen S (1998) Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 98:2709–2715

    PubMed  CAS  Google Scholar 

  83. Mann D, Reid M (2003) Exercise training and skeletal muscle inflammation in chronic heart failure: feeling better about fatigue. J Am Coll Cardiol 42:869–872

    PubMed  Google Scholar 

  84. Haykowsky M, Liang Y, Pechter D et al (2007) A meta-analysis of the effect of exercise training on left ventricular remodeling in heart failure patients: the benefit depends on the type of training performed. J Am Coll Cardiol 49:2329–2336

    PubMed  Google Scholar 

  85. Miki K, Maekura R, Nagaya N et al (2012) Ghrelin treatment of cachectic patients with chronic obstructive pulmonary disease: a multicenter, randomized, double blind, placebo-controlled trial. PLoS One 7(5):e35708

    PubMed  Google Scholar 

  86. Ebner N, Werner CG, Doehner W et al (2012) Recent developements in the treatment of cachexia: highlights from the 6th Cachexia Conference. J Cachexia Sarcopenia Muscle 3:45–50

    PubMed  Google Scholar 

  87. Dalton JT, Barnette KG, Bohl CE et al (2011) The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. J Cachexia Sarcopenia Muscle 2:153–161

    PubMed  Google Scholar 

  88. Dodson S, Hancock ML, Johnston MA et al (2011) GTx-024, a selective androgen receptor modulator (SARM), improves physical function in non small-cell lung cancer (NSCLC) patients with muscle wasting. J Cachexia Sarcopenia Muscle 2:209–261 (Abstract 8-07)

    Google Scholar 

  89. Dodson S, Hancock ML, Johnston MA, Steiner MS (2011) In a phase IIb trial GTx-024 overcomes the negative impact of >8% weight loss on overall survival in non-small cell lung cancer (NSCLC) objects. J Cachexia Sarcopenia Muscle 2:209–261 (Abstract 8-08)

    Google Scholar 

  90. Coats AJS, Srinivasan V, Surendran J et al (2011) The ACT-ONE trial, a multicentre, randomised, double-blind, placebo-controlled, dose-finding study of anabolic/catabolic transforming agent, MT-102 in subjects with cachexia related to stage III and IV non-small cell lung cancer and colorectal cancer: study design. J Cachexia Sarcopenia Muscle 2:201–207

    Google Scholar 

  91. Elkina Y, Haeling S von, Anker SD, Springer J (2011) The role of myostatin in muscle wasting: an overview. J Cachexia Sarcopenia Muscle 2:143–151

    PubMed  Google Scholar 

  92. McPheron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90

    Google Scholar 

  93. Sharma M, Kambadur R, Mathews KG et al (1999) Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J Cell Physiol 180:1–9

    PubMed  CAS  Google Scholar 

  94. Allen DL, Cleary AS, Speaker KJ et al (2008) Myostatin, activin receptor IIb and follistatin-like-3 gene expression are altered in adipose tissue and skeletal muscle of obese mice. Am J Physiol Endocrinol Metab 294:E918–E927

    PubMed  CAS  Google Scholar 

  95. Haehling S von, Lainscak M, Springer J, Anker SD (2009) Cardiac cachexia: a systematic overview. Pharmacol Ther 121:227–252

    Google Scholar 

  96. Lee SJ, McPheron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A 98:9306–9311

    PubMed  CAS  Google Scholar 

  97. Lee AH, Mull RL, Keenan GF et al (1994) Osteoporosis and bone morbidity in cardiac transplant recipients. Am J Med 96:35–41

    PubMed  CAS  Google Scholar 

  98. Rodino-Klapac LR, Haidet AM, Kota J et al (2009) Inhibition of myostatin with emphasis on follistatin as a therapy for muscle disease. Muscle Nerve 39:283–296

    PubMed  CAS  Google Scholar 

  99. George I, Bish LT, Kamalakkannan G et al (2010) Myostatin activation in patients with advanced heart failure and after mechanical unloading. Eur J Heart Fail 12:444–453

    PubMed  CAS  Google Scholar 

  100. Heineke J, Auger-Messier M, Xu J et al (2010) Genetic deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure. Circulation 121:419–425

    PubMed  CAS  Google Scholar 

  101. Wagner KR, Fleckenstein JL, Amato AA et al (2008) A phase I/II trial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol 63:561–571

    PubMed  CAS  Google Scholar 

  102. Springer J, Adams V, Anker SD (2010) Myostatin: regulator of muscle wasting in heart failure and treatment target for cardiac cachexia. Circulation 121:354–356

    PubMed  Google Scholar 

  103. Zhou X, Wang JL, Lu J et al (2010) Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142:531–543

    PubMed  CAS  Google Scholar 

  104. Von Haeling, Lainscak M, Doehner W et al (2010) Diabetes mellitus, cachexia and obesity in heart failure: rationale and design of Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). J Cachexia Sarcopenia Muscle 1:187–194

    Google Scholar 

  105. Fülster S, Tacke M, Sandek A et al (2013) Muscle wasting in patients with chronic heart failure: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur Heart J 34:512–519

    PubMed  Google Scholar 

Download references

Einhaltung der ethischen Richtlinien

Interessenkonflikt. J. Altenberger und M. Clauser geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Altenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clauser, M., Altenberger, J. Adipositas und kardiale Kachexie bei chronischer Herzinsuffizienz. Herz 38, 610–617 (2013). https://doi.org/10.1007/s00059-013-3885-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-013-3885-0

Schlüsselwörter

Keywords

Navigation