Skip to main content

Advertisement

Log in

Current status of cardiac CT for the detection of myocardial ischemia

Gegenwärtiger Stand der Ischämiediagnostik mit der Kardio-CT

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Stress and rest myocardial perfusion imaging using computed tomography (CT) can be accurately and safely performed. CT angiography allows for the anatomic visualization of coronary lesions and the components of atherosclerotic plaque, whereas according to currently available data, CT perfusion imaging improves the diagnostic accuracy for detecting ischemic lesions. However, the radiation exposure and contrast load that are involved cannot be neglected. Owing to the limited number of trials that have been published so far, and the fact that they used a wide variety of image acquisition and stress protocols, a standard acquisition protocol for CT perfusion imaging still needs to be found and evaluated in larger multicenter trials. Therefore, CT perfusion imaging, as opposed to other modalities such as magnetic resonance perfusion, SPECT, or positron emission tomography, cannot yet be regarded as clinical routine, but may be considered in patients with contraindications for other imaging modalities.

Zusammenfassung

Ischämiediagnostik kann zuverlässig und sicher mit der kardialen Computertomographie (CT) durchgeführt werden. Die CT-Koronarangiographie ermöglicht die anatomische Darstellung von Koronarstenosen und die Zusammensetzung atherosklerotischer Plaque. Aktuelle Daten weisen darauf hin, dass die diagnostische Genauigkeit zur Detektion hämodynamisch relevanter Koronarstenosen durch eine zusätzliche CT-Perfusionsbildgebung verbessert werden kann. Hierbei sollte jedoch nicht die Strahlenbelastung und die eingesetzte Kontrastmittelmenge vernachlässigt werden. Da bisher nur eine begrenzte Anzahl von Studien veröffentlicht wurde und viele verschiedene Bildakquisitions- und Stressprotokolle verwendet wurden, gilt es, ein Standardakquisitionsprotokoll noch festzulegen und in größeren multizentrischen Studien zu testen. Aus diesem Grund kann die Ischämiediagnostik mit der Kardio-CT im Vergleich zu anderen etablierten bildgebenden Verfahren wie der Magnetresonanztomographie, der SPECT (Einzelphotonenemissions-CT) und der Positronenemissionstomographie noch nicht als klinische Routinediagnostik angesehen werden, könnte aber bei Patienten mit Kontraindikationen für andere bildgebende Verfahren zum Einsatz kommen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mowatt G, Cook JA, Hillis GS et al (2008) 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta-analysis. Heart 94:1386–1393

    Article  PubMed  CAS  Google Scholar 

  2. Achenbach S (2007) Cardiac CT: state of the art, for the detection of coronary arterial stenosis. J Cardiovasc Comput Tomogr 1:3–20

    Article  PubMed  Google Scholar 

  3. Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Compute Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 52:1724–1732

    Article  PubMed  Google Scholar 

  4. Meijboom WB, Meijs MF, Schuijf JD et al (2008) Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 52:2135–2144

    Article  PubMed  Google Scholar 

  5. Voros S, Rinehart S, Qian Z et al (2011) Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and metaanalysis. JACC Cardiovasc Imaging 4:537–548

    Article  PubMed  Google Scholar 

  6. Kerl JM, Schoepf UJ, Zwerner PL et al (2011) Accuracy of coronary artery stenosis detection with CT versus conventional coronary angiography compared with composite findings from both tests as an enhanced reference standard. Eur Radiol 21:1895–1903

    Article  PubMed  Google Scholar 

  7. Achenbach S, Goroll T, Seltmann M et al (2011) Detection of coronary artery stenoses by low-dose, prospectively ECGtriggered, high-pitch spiral coronary CT angiography. JACC Cardiovasc Imaging 4:328–337

    Article  PubMed  Google Scholar 

  8. Scheffel H, Alkadhi H, Leschka S et al (2008) Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 94:1132–1137

    Article  PubMed  CAS  Google Scholar 

  9. Taylor AJ, Cerqueira M, Hodgson JM et al (2010) ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 Appropriate Use Criteria for Cardiac Computed Tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Cardiovasc Comput Tomogr 4:407–433

    PubMed  Google Scholar 

  10. Di Carli MF, Dorbala S, Curillova Z et al (2007) Relationship between CT coronary angiography and stress perfusion imaging in patients with suspected ischemic heart disease assessed by integrated PET-CT imaging. J Nucl Cardiol 14:799–809

    Article  Google Scholar 

  11. Schuijf JD, Wijns W, Jukema JW et al (2006) Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol 48:2508–2514

    Article  PubMed  Google Scholar 

  12. Meijboom WB, Van Mieghem CA, Pelt N van et al (2008) Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol 52:636–643

    Article  PubMed  Google Scholar 

  13. Pijls NH, Fearon WF, Tonino PA et al (2010) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J Am Coll Cardiol 56:177–184

    Article  PubMed  Google Scholar 

  14. Tonino PA, De Bruyne B, Pijls NH et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360:213–224

    Article  PubMed  CAS  Google Scholar 

  15. De Bruyne B, Pijls NH, Kalesan B et al (2012) Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 367:991–1001

    Article  Google Scholar 

  16. Hachamovitch R, Berman DS, Shaw LJ et al (1998) Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation 97:535–543

    Article  PubMed  CAS  Google Scholar 

  17. Hachamovich R, Hayes SW, Friedman JD et al (2003) Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation 107:2900–2907

    Article  Google Scholar 

  18. Iskandrian AS, Chae SC, Heo J et al (1993) Independent and incremental prognostic value of exercise single-photon emission computed tomographic (SPECT) thallium imaging in coronary artery disease. J Am Coll Cardiol 22:665–670

    Article  PubMed  CAS  Google Scholar 

  19. Ko BS, Cameron JD, Defrance T, Seneviratne SK (2011) CT stress myocardial perfusion imaging using multidetector CT – A review. J Cardiovasc Comput Tomogr 5:345–356

    Article  PubMed  Google Scholar 

  20. Bischoff B, Bamberg F, Marcus R et al (2012) Optimal timing for first-pass stress CT myocardial perfusion imaging. Int J Cardiovasc Imaging. doi:10.1007/s105554-012-0080-y

  21. George RT, Arbab-Zadeh A, Cerci RJ et al (2011) Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320-MDCT: the CT angiography and perfusion methods of the CORE320 multicenter multinational diagnostic study. AJR Am J Roentgenol 197:829–837

    Article  PubMed  Google Scholar 

  22. Wang Y, Qin L, Shi X et al (2012) Adenosine-stress dynamic myocardial perfusion imaging with second-generation dual-source CT: comparison with conventional catheter coronary angiography and SPECT nuclear myocardial perfusion imaging. AJR Am J Roentgenol 198:521–529

    Article  PubMed  Google Scholar 

  23. Rocha-Filho JA, Blankstein R, Shturman LD et al (2010) Incremental value of adenosine-induced stress myocardial perfusion imaging with dual-source CT at cardiac CT angiography. Radiology 254:410–419

    Article  PubMed  Google Scholar 

  24. Bamberg F, Becker A, Schwarz F et al (2011) Detection of hemodynamically significant coronary artery stenosis: incremental diagnostic value of dynamic CT-based myocardial perfusion imaging. Radiology 260:689–698

    Article  PubMed  Google Scholar 

  25. Bastarrika G, Ramos-Duran L, Rosenblum MA et al (2010) Adenosine-stress dynamic myocardial CT perfusion imaging: initial clinical experience. Invest Radiol 45:306–313

    Article  PubMed  CAS  Google Scholar 

  26. Blankstein R, Shturman LD, Rogers IS et al (2009) Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol 54:1072–1084

    Article  PubMed  Google Scholar 

  27. Feuchtner G, Goetti R, Plass A et al (2011) Adenosine stress high-pitch 128-slice dual-source myocardial computed tomography perfusion for imaging of reversible myocardial ischemia: comparison with magnetic resonance imaging. Circ Cardiovasc Imaging 4:540–549

    Article  PubMed  Google Scholar 

  28. Ko SM, Choi JW, Hwang HK et al (2012) Diagnostic performance of combined noninvasive anatomic and functional assessment with dual-source CT and adenosine-induced stress dual-energy CT for detection of significant coronary stenosis. AJR Am J Roentgenol 198:512–520

    Article  PubMed  Google Scholar 

  29. Nagao M, Kido T, Watanabe K et al (2011) Functional assessment of coronary artery flow using adenosine stress dual-energy CT: a preliminary study. Int J Cardiovasc Imaging 27:471–481

    Article  PubMed  Google Scholar 

  30. Ko SM, Choi JW, Song MG et al (2011) Myocardial perfusion imaging using adenosine-induced stress dual-energy computed tomography of the heart: comparison with cardiac magnetic resonance imaging and conventional coronary angiography. Eur Radiol 21:26–35

    Article  PubMed  Google Scholar 

  31. Ko BS, Cameron JD, Meredith IT et al (2012) Computed tomography stress myocardial perfusion imaging in patients considered for revascularization: a comparison with fractional flow reserve. Eur Heart J 33:67–77

    Article  PubMed  Google Scholar 

  32. Bøttcher M, Refsgaard J, Madsen MM et al (2003) Effect of antianginal medication on resting myocardial perfusion and pharmacologically induced hyperemia. J Nucl Cardiol 10:345–352

    Article  PubMed  Google Scholar 

  33. Yoon AJ, Melduni RM, Duncan SA et al (2009) The effect of beta-blockers on the diagnostic accuracy of vasodilator pharmacologic SPECT myocardial perfusion imaging. J Nucl Cardiol 16:358–367

    Article  PubMed  Google Scholar 

  34. Ho KT, Chua KC, Klotz E, Panknin C (2010) Stress and rest dynamic myocardial perfusion imaging by evaluation of complete time-attenuation curves with dual-source CT. JACC Cardiovasc Imaging 3:811–820

    Article  PubMed  Google Scholar 

  35. Cury RC, Magalhães TA, Paladino AT et al (2011) Dipyridamole stress and rest transmural myocardial perfusion ratio evaluation by 64 detector-row computed tomography. J Cardiovasc Comput Tomogr 5:443–448

    Article  PubMed  Google Scholar 

  36. Cury RC, Magalhães TA, Borges AC et al (2010) Dipyridamole stress and rest myocardial perfusion by 64-detector row computed tomography in patients with suspected coronary artery disease. Am J Cardiol 106:310–315

    Article  PubMed  Google Scholar 

  37. Ruzsics B, Schwarz F, Schoepf UJ et al (2009) Comparison of dual-energy computed tomography of the heart with single photon emission computed tomography for assessment of coronary artery stenosis and of the myocardial blood supply. Am J Cardiol 104:318–326

    Article  PubMed  Google Scholar 

  38. George RT, Arbab-Zadeh A, Miller JM et al (2012) Computed tomography myocardial perfusion imaging with 320-row detector computed tomography accurately detects myocardial ischemia in patients with obstructive coronary artery disease. Circ Cardiovasc Imaging 5:333–340

    Article  PubMed  Google Scholar 

  39. Pijls NH, De Bruyne B (1998) Coronary pressure measurement and fractional flow reserve. Heart 80:539–542

    PubMed  CAS  Google Scholar 

  40. Min JK, Leipsic J, Pencina MJ et al (2012) Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 308:1237–1245

    PubMed  CAS  Google Scholar 

  41. Min JK, Koo BK, Erglis A et al (2012) Usefulness of noninvasive fractional flow reserve computed from coronary computed tomographic angiograms for intermediate stenoses confirmed by quantitative coronary angiography. Am J Cardiol 110:971–976

    Article  PubMed  Google Scholar 

  42. Koo BK, Erglis A, Doh JH et al (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 58:1989–1997

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Schuhbäck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuhbäck, A., Marwan, M., Cury, R. et al. Current status of cardiac CT for the detection of myocardial ischemia. Herz 38, 359–366 (2013). https://doi.org/10.1007/s00059-013-3805-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-013-3805-3

Keywords

Schlüsselwörter

Navigation