Skip to main content
Log in

Coronary artery fistulas in children

Evaluation with 64-slice multidetector CT

Koronararterienfisteln bei Kindern

Beurteilung mit 64-Schicht-Multidetektor-CT

  • Original article
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Objectives

There are various types of coronary artery fistulas (CAF) with complex shapes. Therefore, it is important to make a correct diagnosis and to understand the relationship of the CAF to the adjacent structures before transcatheter occlusion or surgery. This study evaluated the feasibility of using 64-slice multidetector computed tomography (MDCT) angiography in diagnosing CAF.

Methods

Two readers who were blinded to the results of echocardiography, intervention, or surgery retrospectively evaluated the coronary MDCT appearances of CAF in 10 patients (4 boys and 6 girls; mean age, 2.9 years; range, 1–6 years). The origin, course, and distal entry site of the fistula were determined. The diameters of the origin and the distal entry site were measured and compared with those seen during intervention or surgery.

Results

The origin, course, and distal vessel entry site of the CAF were clearly outlined in all patients by MDCT. The distal vessel draining site involved a single entry vessel in all patients. Seven fistulas involved the right coronary artery, and three involved the left coronary artery. Four fistulas drained into the right ventricle, four into the right atrium, and two into the left ventricle. The diagnosis of CAF using MDCT was in accordance with diagnoses made during intervention or surgery. There was an excellent correlation between MDCT and transcatheter occlusion in quantifying the diameters of the origin and distal entry site (R = 0.90 and 0.92, respectively, P < 0.05).

Conclusion

Coronary 64-slice MDCT angiography depicted the whole shape and course of the CAF as well as of the surrounding structures. It may serve as a noninvasive diagnostic tool when planning a therapeutic strategy.

Zusammenfassung

Ziel

Es gibt verschieden Arten von Koronararterienfisteln mit komplexen Formen, daher ist es wichtig, die korrekte Diagnose zu stellen und die Beziehungen zu den benachbarten Strukturen vor der Okklusion via Katheter oder Operation zu kennen. In der vorliegenden Studie wurde die Durchführbarkeit einer 64-Schicht-Multidetektor-Computertomographie(MDCT)-Angiographie zur Diagnose einer Koronararterienfistel beurteilt.

Methoden

Zwei Beurteiler, die in Bezug auf die Ergebnisse der Echokardiographie, Intervention oder Operation verblindet waren, werteten die Koronar-MDCT-Aufnahmen der Koronararterienfisteln bei 10 Patienten aus (4 Jungen, 6 Mädchen; Durchschnittsalter: 1,9 Jahre, Spannweite: 1–6 Jahre). Fistelursprung, -verlauf und distale Eintrittsstelle wurden bestimmt. Der Durchmesser des Ursprungs und der distalen Eintrittsstelle wurden gemessen und mit jenen bei Intervention oder Operation verglichen.

Ergebnisse

Ursprung, Verlauf und distale Gefäßeintrittsstelle der Koronararterienfistel wurden bei allen Patienten mittels MDCT klar dargestellt. An der distalen Gefäßabflussstelle handelte es sich bei sämtlichen Patienten um ein einzelnes Eintrittsgefäß. Bei 7 Fisteln betraf es die rechte Koronararterie und bei 3 die linke. Bei den distalen Abflüssen der Koronararterienfistel flossen 4 Fisteln in den rechten Ventrikel ab, 4 in den rechten Vorhof und 2 in den linken Ventrikel. Die Diagnose per MDCT stimmte mit der Intervention oder Operation überein. Es bestand eine ausgezeichnete Korrelation zwischen MDCT und Okklusion via Katheter hinsichtlich der Quantifizierung der Durchmesser des Ursprungs und der distalen Eintrittsstelle (r = 0,90 bzw. 0,92; p < 0,05).

Fazit

Mit der koronaren 64-Schicht-MDCT-Angiographie ließen sich die Form, der Verlauf der Koronararterienfistel und die umgebenden Strukturen zur Gänze darstellen. Das Verfahren kann als nichtinvasives diagnostisches Mittel zur Planung des therapeutischen Vorgehens dienen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Liberthson RR (1989) Congenital heart disease. Diagnosis and management in children and adults. Brown, Toronto

  2. Gowda RM, Vasavada BC, Khan IA (2006) Coronary artery fistulas: clinical and therapeutic considerations. Int J Cardiol 107:7–10

    Article  PubMed  Google Scholar 

  3. Hofbeck M, Wild F, Singer H (1993) Improved visualization of a coronary artery fistula by the laid-back aortogram. Br Heart J 70:272–273

    Article  PubMed  CAS  Google Scholar 

  4. Lee K, Danton GH, Kardon RE (2012) Three-dimesional computed tomographic analysis of a rare left coronary artery to left ventricle fistula. Pediatr Cardiol. doi:10.1007/s00246-012-0552-9 (Epub ahead of print)

  5. Lee EY, Siegel MJ, Hildebolt CF et al (2004) MDCT evaluation of thoracic aortic anomalies in pediatric patients and young adults: comparison of axial, multiplanar, and 3D images. Am J Roentgenol 182:777–784

    Article  Google Scholar 

  6. Paul JF, Rohnean A, Elfassy E et al (2011) Radiation dose for thoracic and coronary step-and shoot CT using a 128-slice dual-source machine in infants and small children with congenital heart disease. Pediatr Radiol 41:244–249

    Article  PubMed  Google Scholar 

  7. Thomas KE, Wang B (2008) Age-specific effective doses for pediatric MSCT examinations at a large children’s hospital using DLP conversion coefficients: a simple estimation method. Pediatr Radiol 38:645–656

    Article  PubMed  Google Scholar 

  8. Okwuosa TM, Gundeck EL, Ward RP (2006) Coronary to pulmonary artery fistula: diagnosis by transesophageal echocardiography. Echocardiography 23:62–64

    Article  PubMed  Google Scholar 

  9. Zenooz NA, Habibi R, Mammen L et al (2009) Coronary artery fistulas: CT findings. Radiographics 29:781–789

    Article  PubMed  Google Scholar 

  10. Wexberg P, Gottsauner-Wolf M, Kiss K et al (2001) An iatrogenic coronary arteriovenous fistula causing a steal phenomenon: an intracoronary Doppler study. Clin Cardiol 24:630–632

    Article  PubMed  CAS  Google Scholar 

  11. Schmitt R, Froehner S, Brunn J et al (2005) Congenital anomalies of the coronary arteries: imaging with contrast-enhanced, multi-detector computed tomography. Eur Radiol 15:1110–1121

    Article  PubMed  Google Scholar 

  12. Chang DS, Lee MH, Lee HY et al (2005) MDCT of left anterior descending coronary artery to main pulmonary artery fistula. Am J Roentgenol 185:1258–1260

    Article  Google Scholar 

  13. Zhang P, Cai G, Chen J et al (2010) Echocardiography and 64-multislice computed tomography angiography in diagnosing coronary artery fistula. J Formos Med Assoc 109:907–912

    Article  PubMed  Google Scholar 

  14. Yang S, Zeng MS, Zhang ZY et al (2010) Sixty-four-multi-detector computed tomography diagnosis of coronary artery anomalies in 66 patients. Chin Med J (Engl) 123:838–842

    Google Scholar 

  15. Kacmaz F, Isiksalan Ozbulbul N, Alyan O et al (2008) Imaging of coronary artery fistulas by multidetector computed tomography: is multidetector computed tomography sensitive? Clin Cardiol 31:41–47

    Article  PubMed  Google Scholar 

  16. Erol C, Seker M (2011) Coronary artery anomalies: the prevalence of origination, course, and termination anomalies of coronary arteries detected by 64-detector computed tomography coronary angiography. J Comput Assist Tomogr 35:618–624

    Article  PubMed  Google Scholar 

  17. Huang B, Law MW, Mak HK et al (2009) Pediatric 64-MDCT coronary angiography with ECG-modulated tube current: radiation dose and cancer risk. Am J Roentgenol 193:539–544

    Article  Google Scholar 

  18. Huang B, Li J, Law MW et al (2008) Radiation dose and cancer risk in retrospectively and prospectively ECG-gated coronary angiography using 64-slice multidetector CT. Br J Radiol 83:152–158

    Article  Google Scholar 

  19. Goo HW, Yang DH (2010) Coronary artery visibility in free breathing young children with congenital heart disease on cardiac. Pediatr Radiol 40:1670–1680

    Article  PubMed  Google Scholar 

  20. Mavroudis C, Backer CL, Rocchini AP et al (1997) Coronary artery fistulas in infants and children: a surgical review and discussion of coil embolization. Ann Thorac Surg 63:1235–1242

    Article  PubMed  CAS  Google Scholar 

  21. Armsby LR, Keane JF, Sherwood MC et al (2002) Management of coronary artery fistulae. Patient selection and results of transcatheter closure. J Am Coll Cardiol 39:1026–1032

    Article  PubMed  Google Scholar 

  22. Latson LA (2007) Coronary artery fistulas: how to manage them. Catheter Cardiovasc Interv 70:110–116

    PubMed  Google Scholar 

  23. Marini D, Agnoletti G, Brunelle F et al (2008) Left coronary to right ventricle fistula in a child: management strategy based on cardiac-gated 64-slice CT. Pediatr Radiol 38:325–327

    Article  PubMed  Google Scholar 

  24. Silva M, Carvalho N, Teixeira A et al (2011) Percutaneous embolization of coronary fistulas: a single-center experience. Rev Port Cardiol 30:891–896

    PubMed  Google Scholar 

  25. Perry SB, Rome J, Keane JF et al (1992) Transcatheter closure of coronary artery fistulas. J Am Coll Cardiol 20:205–209

    Article  PubMed  CAS  Google Scholar 

  26. Liberthson RR, Sagar K, Berkoben JP et al (1997) Congenital coronary arteriovenous fistula. Report of 13 patients, review of the literature and delineation of management. Circulation 59:849–854

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by funding of Shanghai Science and Technology Committee [No. 12ZR1403400].

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Huang.

Additional information

X.H. and L.W. contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Wu, L., Liu, F. et al. Coronary artery fistulas in children. Herz 38, 729–735 (2013). https://doi.org/10.1007/s00059-013-3786-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-013-3786-2

Keywords

Schlüsselwörter

Navigation