Skip to main content
Log in

Lessons learned from experimental myocarditis

Was wir von der experimentellen Myokarditis lernen können

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

We have developed murine models of viral myocarditis induced by encephalomyocarditis (EMC) virus in which severe myocarditis, congestive heart failure and dilated cardiomyopathy occur in high incidence. From these models, we have learned the natural history and pathogenesis and assessed not only new diagnostic methods but also therapeutic and preventive interventions. Autoantibodies against cardiac troponin I appeared in spontaneously developing autoimmune myocarditis in PD-1 deficient mice, who lack the T-cell receptor costimulatory molecule PD-1. The passive transfer of this antibody induced myocardial dysfunction. Later, this autoantibody was found in patients with myocarditis. Mast cell deficiency had beneficial effects in the viral myocarditis model, and anti-allergic agents prevented viral myocarditis. Angiotensin-converting enzyme inhibitors, angiotensin II receptor blocker and an aldosterone receptor antagonist improved viral myocarditis, suggesting that the renin–angiotension–aldosterone system may play an important role in the pathogenesis of viral myocarditis. Differential modulation of cytokine production was seen with various calcium channel blockers, and some calcium channel blocker improved viral myocarditis. Viral infection could lead to increased synthesis of immunoglobulin light chains (FLC). Serum levels of FLC were increased in myocarditis, and exogenously given FLC inhibited viral replication and improved myocarditis. We suggest that a strategy of drug development specifically addressing inflammation in myocarditis may provide increased benefit in terms of target organ damage.

Zusammenfassung

Im tierexperimentellen Modell der murinen Enzephalovirusmyokarditis sind schwere Herzmuskelentzündung, kongestive Herzinsuffizienz und dilatative Kardiomyopathie besonders ausgeprägt. In diesem Modell konnten der Spontanverlauf, die Pathogenese sowie neue diagnostische, therapeutische und präventive Interventionen detailliert erforscht werden. In PD-1-defizienten Mäusen, denen das T-Lymphozyten-kostimulatorische Molekül PD-1 fehlt, fanden sich Antikörper gegen kardiales Troponin I bei der sich spontan entwickelnden autoimmunen Myokarditis. Der passive Transfer dieser Antikörper induzierte eine myokardiale Funktionsstörung. Nachfolgend konnten wir die gegen Troponin I gerichteten Antikörper auch bei Patienten mit Myokarditis nachweisen. Eine Reduktion von Mastzellen und die Behandlung mit Antiallergika wirkten sich in diesem Virusmyokarditismodell günstig aus. ACE-Inhibitoren, AT-II-Rezeptor-Blocker und der Einsatz von Aldosteronrezeptorantagonisten verbesserten den Verlauf der Virusmyokarditis. Dies legt eine zentrale Rolle des Renin-Angiotensin-Aldosteron-Systems bei der Viruspathogenese der Myokarditis nahe. Eine differenzielle Modulation der Zyotkinproduktion fand sich unter dem Einfluss diverser Kalziumantagonisten, wobei einige den Verlauf der Myokarditis verbesserten. Die Virusinfektion könnte zu einer vermehrten Synthese von Immunglobulinleichtketten (FLC) führen. FLCs waren bei Myokarditis erhöht nachweisbar, inhibierten, wenn von extern zugeführt, zusätzlich die Virusreplikation und beeinflussten die Ausprägung der Myokarditis günstig. Wir regen deshalb an, Medikamente zu entwickeln, die gezielt die Entzündung bei Myokarditis beeinflussen, um die Schädigung der Zielorgane, insbesondere des Herzens, zu vermindern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. JCS joint Working Group (2011) Guidelines for diagnosis and treatment of myocarditis. Circ J 75:734–743

    Article  Google Scholar 

  2. Matsumori A (1993) Animal models: pathological findings and therapeutic considerations. In: Banatvala J (ed) Viral infection of the heart. Edward Arnolds, London, pp 110–137

  3. Ukimura A, Izumi T, Matsumori A (2000) A National survey on myocarditis associated with the 2009 influenza A (H1N1) pandemic in Japan. Circ J 101:2193–2219

    Article  Google Scholar 

  4. Matsumori A (2005) Hepatitis C virus infection and cardiomyopathies. Circ Res 96:144–147

    Article  PubMed  CAS  Google Scholar 

  5. Matsumori A, Matoba Y, Nishio R et al (1996) Detection of hepatitis C virus RNA from the heart of patients with hypertrophic cardiomyopathy. Biochem Biophys Res Commun 222: 678–682

    Article  PubMed  CAS  Google Scholar 

  6. Matsumori A, Matova Y, Sasayama S (1995) Dilated cardiomyopathy associated with hepatitis C virus infection. Circulation 92:2519–2525

    Article  PubMed  CAS  Google Scholar 

  7. Caforio AL, Grazzini M, Mann JM et al (1992) Identification of alpha-and beta-cardiac myosin heavy chain isoforms as major autoantigens in dilated cardiomyopathy. Circulation 85:1734–1742

    Article  PubMed  CAS  Google Scholar 

  8. Schultheiss HP, Kuhl U, Janda I et al (1988) Antibody-mediated enhancement of calcium permeability in cardiac myocytes. J Exp Med 168:2105–2119

    Article  PubMed  CAS  Google Scholar 

  9. Tominaga M, Matsumori A, Horie M et al (1993) Activation of Ca-permeable cation channels by myocarditis-associated antibody in guinea pig ventriculae myocytes. J Clin Invest 91:1231–1234

    Article  PubMed  CAS  Google Scholar 

  10. Nishimura H, Okazaki T, Tanaka Y et al (2001) Autoimmue dilated cardiomyopathy in PD-1 receptor deficient mice. Science 291:319–322

    Article  PubMed  CAS  Google Scholar 

  11. Okazaki T, Tnanaka Y, Nisio R et al (2003) Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-dificient mice. Nat Med 9:1477–1483

    Article  PubMed  CAS  Google Scholar 

  12. Matsumori A, Shimada T, Hattori H et al (2011) Autoantibodies against cardiac troponin I in patients presenting with myocarditis. CVD Prev Control 6:41–46

    Article  Google Scholar 

  13. Hara M, Matsumori A, Ono K et al (1999) Mast cells cause apoptosis on cardiomyocytes and prolifiration of other intramyocardial cells in vitro. Circulation 100:1443–1449

    Article  PubMed  CAS  Google Scholar 

  14. Kitaura-Inenaga K, Hara M, Higuchi H et al (2003) Gene expression of cardiac mast cell chymase and tryptase in a murine model of heart failure caused by viral myocarditis. Circ J 67:881–884

    Article  PubMed  CAS  Google Scholar 

  15. Matsumori A, Yamamoto K, Shimada M (2010) Cetirizine a histamine H1 receptor antagonist improves viral myocarditis. J Inflamm (Lond) 7:39

    Google Scholar 

  16. Brown NJ (2008) Aldosterone and vascular inflammation. Hypertension 51:161–167

    Article  PubMed  CAS  Google Scholar 

  17. Griending KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    Article  Google Scholar 

  18. Okamura A, Rakugi H, Ohishi M et al (1999) Upregulation of rennin–angiotensin system during differention of monocytes to macrophages. J Hypertens 17:537–545.

    Article  PubMed  CAS  Google Scholar 

  19. Yamamoto K, Shioi T, Uchiyama K et al (2003) Attention of virus-induced myocardial injury by inhibition of the angiotensin II type 1 receptor signal and decreased nuclear factor-kappa â activation in knock-out mice. J Am Coll Cardiol 42:2000–2006

    Article  PubMed  CAS  Google Scholar 

  20. Wahed MI, Watanabe K, Ma M et al (2005) Effects of eplerenone, a selective aldsterone blocker, on the progression of left ventricular dysfunction and remodeling in rats with dilated cardiomyopathy. Pharmacology 73:81–88

    Article  PubMed  CAS  Google Scholar 

  21. Higuchi H, Hara M, Yamamoto K et al (2008) Mast cells play a critical role in the pathogenesis of viral myocarditis. Circulation 118:363–372

    Article  PubMed  Google Scholar 

  22. Xiao J, Shimada M, Liu W et al (2009) Anti-inflammatory effects of eplerenone on viral myocarditis. Eur J Heart Fail 11:349–353

    Article  PubMed  CAS  Google Scholar 

  23. Matsumori A, Nunokawa Y, Sasayama S (2000) Nifedipine inhibits activation of transcription factor NF-kappaB. Life Sci 67:2655–2661

    Article  PubMed  CAS  Google Scholar 

  24. Liu W, Matsumori A (2011) Calcium channel blockers and modulation of innate immunity. Curr Opin Infect Dis 24:254–258

    Article  PubMed  CAS  Google Scholar 

  25. Matsumori A, Nishio R, Nose Y (2010) Calcium channel blockers differentially modulate cytokine production by peripheral blood mononuclear cells. Circ J 74:567–571

    Article  PubMed  CAS  Google Scholar 

  26. Liu W, Shimada M, Xiao J et al (2009) Nifedipine inhibits the activation of inflammatory and immune reactions in viral myocarditis. Life Sci 85:235–240

    Article  PubMed  CAS  Google Scholar 

  27. Matsumori A, Shimada M, Jie X et al (2010) Effect of free immunoglobulin light chain on viral myocarditis. Circ Res 106:1533–1540

    Article  PubMed  CAS  Google Scholar 

  28. Matsumori A (2009) Global alert and response network for hepatitis C virus-derived heart diseases: a call to action. CVD Prev Control 4:109–118

    Article  Google Scholar 

Download references

Conflict of interest

The corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Matsumori MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumori, A. Lessons learned from experimental myocarditis. Herz 37, 817–821 (2012). https://doi.org/10.1007/s00059-012-3692-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-012-3692-z

Keywords

Schlüsselwörter

Navigation