Skip to main content
Log in

Opportunities and limitations of drug-coated balloons in interventional therapies

Möglichkeiten und Grenzen von mit Medikamenten beschichteten Ballonkathetern in der interventionellen Therapie

  • Main topic/CME
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Drug-coated balloons (DCB) represent a novel clinical treatment modality for coronary and peripheral artery disease. Advantages over standard angioplasty and stent technologies including homogeneous drug delivery to the vessel wall, immediate drug release without the use of a polymer, the option of using balloon catheters alone or in combination with a bare metal stent, no foreign object that remains in the body, the potential of reducing antiplatelet therapy, and lower restenosis rates in some indications. As with drug-eluting stents (DES), one cannot assume a class effect for DCB. So far, data from randomized clinical trials identify the treatment of coronary in-stent restenosis (ISR) and of de novo and restenotic lesions in peripheral artery disease as viable options. Furthermore, treatment of de novo lesions in small coronary vessels, bifurcation lesions, long lesions, pediatric interventions, and cerebrovascular applications are potential beneficial indications. In the coronary application, a strategy of DCB angioplasty with provisional spot-stenting in the case of severe dissections may become a better alternative in long and complex lesions, bifurcations, or in patients with contraindications for DES.

Zusammenfassung

Mit Medikamenten beschichtete Ballonkatheter („drug-coated balloons“, DCB) sind eine neue Behandlungsmöglichkeit in der interventionellen Kardiologie und Angiologie. Dabei wird die Ballonoberfläche mit einem wachstumshemmenden Medikament beschichtet, das am Ort der Gefäßverengung anders als bei Medikamente freisetzenden Stents („drug-eluting stents“, DES) sofort freigesetzt wird. Ein Polymer ist für die Freisetzungsmodulation nicht nötig, allerdings spielen Zusatzstoffe eine wesentliche Rolle. Im Gegensatz zur Stent-Therapie bleibt nach dem Eingriff kein Fremdkörper zurück. In Deutschland sind derzeit 5 DCB für die koronare Indikation sowie 3 DCB für periphere Gefäße zugelassen und verfügbar. Alle DCB sind mit Paclitaxel beschichtet. Unterschiede bestehen bei den Zusatzstoffen und dem Beschichtungsverfahren. Analog zu den DES besteht auch für DCB kein Klasseneffekt. DCB erscheinen in Koronararterien v. a. für Situationen geeignet, in denen eine Stent-Einlage ungünstig erscheint. Publiziert sind bislang 3 randomisierte klinische Studien zur Therapie der In-Stent-Stenose nach BMS-Implantation, die zu einer Klasse-IIa-Empfehlung in den aktuellen ESC-Leitlinien zur Revaskularisation für die in den Studien geprüften DCB geführt haben. Weitere mögliche Indikationen sind die Therapie der DES-Restenose, De-novo Läsionen in kleinen Koronargefäßen und Bifurkationsläsionen; hier stehen die Wirknachweise in randomisierten klinischen Studien allerdings noch aus. Der Einsatz kurzer Stents für Dissektionen und DCB für das gesamte erkrankte Areal könnte möglicherweise Vorteile gegenüber einer vollständigen Stent-Versorgung („full metal jacket“) sehr langer Koronarläsionen haben. Weiterhin fand sich für DCB in randomisierten klinischen Studien ein Wirknachweis für Stenosen und Verschlüsse im Oberschenkelbereich. Darüber hinaus gibt es erste positive Erfahrungen mit DCB bei langen Läsionen und Verschlüssen im Unterschenkel, in der Neuroradiologie und in der Kinderkardiologie. Die Möglichkeiten und Grenzen von DCB müssen zukünftig in randomisierten klinischen Studien zu unterschiedlichen Indikationen, aber auch für die unterschiedlichen DCB-Konzepte weiter untersucht werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gruntzig A (1978) Transluminal dilatation of coronary-artery stenosis. Lancet 1(8058):263

    Article  PubMed  CAS  Google Scholar 

  2. Sigwart U et al (1987) Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med 316(12):701–706

    Article  PubMed  CAS  Google Scholar 

  3. Morice MC et al (2002) A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med 346(23):1773–1780

    Article  PubMed  CAS  Google Scholar 

  4. Scheller B et al (2006) Treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. N Engl J Med 355(20):2113–2124

    Article  PubMed  CAS  Google Scholar 

  5. Hwang CW, Wu D, Edelman ER (2001) Physiological transport forces govern drug distribution for stent-based delivery. Circulation 104(5):600–605

    Article  PubMed  CAS  Google Scholar 

  6. Scheller B, Speck U, Bohm M (2007) Prevention of restenosis: is angioplasty the answer? Heart 93(5):539–541

    Article  PubMed  Google Scholar 

  7. Axel DI et al (1997) Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation 96(2):636–645

    PubMed  CAS  Google Scholar 

  8. Scheller B et al (2003) Contrast media as carriers for local drug delivery. Successful inhibition of neointimal proliferation in the porcine coronary stent model. Eur Heart J 24(15):1462–1467

    Article  PubMed  CAS  Google Scholar 

  9. Scheller B et al (2003) Addition of paclitaxel to contrast media prevents restenosis after coronary stent implantation. J Am Coll Cardiol 42(8):1415–1420

    Article  PubMed  CAS  Google Scholar 

  10. Iofina E et al (2006) Polymer-based paclitaxel-eluting stents are superior to nonpolymer-based paclitaxel-eluting stents in the treatment of de novo coronary lesions. Am J Cardiol 98(8):1022–1027

    Article  PubMed  CAS  Google Scholar 

  11. Joner M et al (2006) Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 48(1):193–202

    Article  PubMed  Google Scholar 

  12. Virmani R et al (2004) Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation 109(6):701–705

    Article  PubMed  Google Scholar 

  13. Creel CJ, Lovich MA, Edelman ER (2000) Arterial paclitaxel distribution and deposition. Circ Res 86(8):879–884

    PubMed  CAS  Google Scholar 

  14. Lovich MA et al (2001) Carrier proteins determine local pharmacokinetics and arterial distribution of paclitaxel. J Pharm Sci 90(9):1324–1335

    Article  PubMed  CAS  Google Scholar 

  15. Scheller B et al (2002) Acute cardiac tolerance of current contrast media and the new taxane protaxel using iopromide as carrier during porcine coronary angiography and stenting. Invest Radiol 37(1):29–34

    Article  PubMed  CAS  Google Scholar 

  16. Speck U et al (2004) Inhibition of restenosis in stented porcine coronary arteries: uptake of paclitaxel from angiographic contrast media. Invest Radiol 39(3):182–186

    Article  PubMed  CAS  Google Scholar 

  17. Scheller B et al (2004) Paclitaxel balloon coating, a novel method for prevention and therapy of restenosis. Circulation 110(7):810–814

    Article  PubMed  CAS  Google Scholar 

  18. Speck U et al (2006) Neointima inhibition: comparison of effectiveness of non-stent-based local drug delivery and a drug-eluting stent in porcine coronary arteries. Radiology 240(2):411–418

    Article  PubMed  Google Scholar 

  19. Albrecht T et al (2007) Reduction of stenosis due to intimal hyperplasia after stent supported angioplasty of peripheral arteries by local administration of paclitaxel in swine. Invest Radiol 42(8):579–585

    Article  PubMed  CAS  Google Scholar 

  20. Cremers B et al (2009) Drug-eluting balloon: very short-term exposure and overlapping. Thromb Haemost 101(1):201–206

    PubMed  CAS  Google Scholar 

  21. Schnorr B et al (2010) Paclitaxel-coated balloons – survey of preclinical data. Minerva Cardioangiol 58(5):567–582

    PubMed  CAS  Google Scholar 

  22. Kelsch B et al (2011) Dose response to paclitaxel-coated balloon catheters in the porcine coronary overstretch and stent implantation model. Invest Radiol (in press)

  23. Posa A et al (2008) Attainment of local drug delivery with paclitaxel-eluting balloon in porcine coronary arteries. Coron Artery Dis 19(4):243–247

    Article  PubMed  Google Scholar 

  24. Cremers B et al (2009) Comparison of two different paclitaxel-coated balloon catheters in the porcine coronary restenosis model. Clin Res Cardiol 98(5):325–330

    Article  PubMed  CAS  Google Scholar 

  25. Posa A et al (2010) Optimization of drug-eluting balloon use for safety and efficacy: evaluation of the 2nd generation paclitaxel-eluting DIOR-balloon in porcine coronary arteries. Catheter Cardiovasc Interv 76(3):395–403

    Article  PubMed  Google Scholar 

  26. Scheller B et al (2008) Two year follow-up after treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. Clin Res Cardiol 97(10):773–781

    Article  PubMed  Google Scholar 

  27. Unverdorben M et al (2009) Paclitaxel-coated balloon catheter versus paclitaxel-coated stent for the treatment of coronary in-stent restenosis. Circulation 119(23):2986–2994

    Article  PubMed  CAS  Google Scholar 

  28. Wijns W et al (2010) Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 31(20):2501–2555

    Article  PubMed  Google Scholar 

  29. Unverdorben M et al (2010) Treatment of small coronary arteries with a paclitaxel-coated balloon catheter. Clin Res Cardiol 99(3):165–174

    Article  PubMed  CAS  Google Scholar 

  30. Poss J et al (2010) Hotlines and clinical trial updates presented at the German Cardiac Society Meeting 2010: FAIR-HF, CIPAMI, LIPSIA-NSTEMI, Handheld-BNP, PEPCAD III, remote ischaemic conditioning, CERTIFY, PreSCD-II, German Myocardial Infarction Registry, DiaRegis. Clin Res cardiol 99(7):411–417

    Article  PubMed  Google Scholar 

  31. Mathey DKFX (2011) Treatment of bifurcation lesions with a drug-eluting balloon. EuroIntervention Supplement (in press)

  32. Kleber FXMD, Rittger H, Scheller B (2011) On behalf of the German drug-eluting balloon consensus group. How to use the drug-eluting balloon. Recommendations by the German consensus group. EuroIntervention Supplement (in press)

  33. Cortese B et al (2010) Paclitaxel-coated balloon versus drug-eluting stent during PCI of small coronary vessels, a prospective randomised clinical trial. The PICCOLETO study. Heart 96(16):1291–1296

    Article  PubMed  Google Scholar 

  34. Fanggiday JC et al (2008) Safety and efficacy of drug-eluting balloons in percutaneous treatment of bifurcation lesions: the DEBIUT (drug-eluting balloon in bifurcation Utrecht) registry. Catheter Cardiovasc Interv 71(5):629–635

    Article  PubMed  Google Scholar 

  35. Belkacemi AA, Voskuil P, Stella MP (2011) Coronary bifurcation lesions treated with drug-eluting balloon: results of the DEBIUT study. EuroIntervention Supplement (in press)

  36. Cremers B et al (2010) Treatment of coronary in-stent restenosis with a novel paclitaxel urea coated balloon. Minerva Cardioangiol 58(5):583–588

    PubMed  CAS  Google Scholar 

  37. Werk M et al (2008) Inhibition of restenosis in femoropopliteal arteries: paclitaxel-coated versus uncoated balloon: femoral paclitaxel randomized pilot trial. Circulation 118(13):1358–1365

    Article  PubMed  CAS  Google Scholar 

  38. Tepe G et al (2008) Local delivery of paclitaxel to inhibit restenosis during angioplasty of the leg. N Engl J Med 358(7):689–699

    Article  PubMed  CAS  Google Scholar 

  39. Fokstuen S et al (2011) Rapid detection of genetic variants in hypertrophic cardiomyopathy by custom DNA resequencing array in clinical practice. J Med Genet (in press)

Download references

Conflict of interest

The corresponding author reports receiving speaker honoraria from B. Braun and Invatec Medtronic; in addition, he is a shareholder in InnoRa GmbH, Berlin, and is named as a co-inventor on a patent application submitted by Charité University Hospital (Berlin, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Scheller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheller, B. Opportunities and limitations of drug-coated balloons in interventional therapies. Herz 36, 232–240 (2011). https://doi.org/10.1007/s00059-011-3462-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-011-3462-3

Keywords

Schlüsselwörter

Navigation