Skip to main content
Log in

Catheter Ablation of Ventricular Tachycardia

From Indication to Three-Dimensional Mapping Technology

Ventrikuläre Tachykardien. Verbesserte Möglichkeiten der Katheterablation durch dreidimensionale Navigationssysteme

  • Published:
Herz Kardiovaskuläre Erkrankungen Aims and scope Submit manuscript

Abstract

The majority of ventricular tachycardias (VTs) occurs in patients with structural heart disease, predominantly coronary heart disease. Implantable cardioverter defibrillators (ICDs) are first-line therapy in patients with VT and structural heart disease. In patients who receive an ICD after a spontaneous sustained VT, recurrent VT episodes or an electrical storm are major problems. In addition, in patients with an ICD implanted for primary prevention of sudden cardiac death, 20% will experience at least one VT episode within 3–5 years after ICD implantation. Catheter ablation has a high acute success rate in eliminating clinical VT. However, several factors make catheter ablation of VT more difficult than ablation of supraventricular tachyarrhythmias. (1) The infarct region is often large. (2) The induced VT can be unstable or hemodynamically only poorly tolerated and therefore “unmappable”. (3) Though most commonly located in the subendocardium, the critical VT zone can occasionally be epicardial or intramural in location. (4) In many cases, several reentrant circuits may coexist making ablation of a single form of VT a palliative procedure which does not obviate the risk of sudden death. Thus, catheter ablation of sustained VT in the setting of structural heart disease can only be considered an adjunctive therapy which, in general, will require ICD therapy. Numerous “modern” mapping technologies have been developed, which have increased success rates of catheter ablation of VT in patients with and without structural heart disease. The aim of the present article is to review current three-dimensional mapping systems in comparison to conventional mapping and to describe a reasonable, tailored approach for the individual patient with VT.

Zusammenfassung

Die meisten ventrikulären Tachykardien (VT) treten bei Patienten mit struktureller Herzerkrankung auf. Implantierbare Kardioverter-Defibrillatoren (ICD) sind heutzutage Therapie der ersten Wahl bei diesen Patienten, um einen plötzlichen Herztod zu verhindern. Bei Patienten, die einen ICD nach Auftreten einer anhaltenden VT erhalten, besteht eine hohe Rezidivgefahr für erneute VT-Episoden. Darüber hinaus erleiden etwa 20% der Patienten, die primärprophylaktisch mit einem ICD versorgt werden, zumindest eine VT-Episode innerhalb von 3–5 Jahren nach ICD-Implantation. Die Katheterablation von VT stellt allein oder in Kombination mit einer medikamentösen antiarrhythmischen Therapie heutzutage eine wichtige Möglichkeit zur Behandlung von VT dar. Gegenüber der Ablationsbehandlung supraventrikulärer Tachykardien ist die Ablation von VT vielfach durch schlechte Auslösebedingungen, hämodynamische Instabilität während laufender Tachykardie und das Auftreten multipler VT erschwert. Vielfach liegen mehrere Reentrytachykardien vor, so dass die VT-Ablation bei struktureller Herzerkrankung in der Regel eine palliative Maßnahme ist. Demgegenüber kann die Mehrzahl von VT bei fehlender struktureller Herzerkrankung (sog. idiopathische VT) kurativ abladiert werden. Zur Ablation steht neben konventionellen Mapping-Verfahren heutzutage eine Reihe „moderner“ dreidimensionaler Mapping-Technologien zur Verfügung, mit deren Hilfe die Erfolgsraten von VT-Ablationen deutlich gestiegen sind. Ziel der vorliegenden Arbeit ist es, eine Übersicht über vorhandene dreidimensionale Mapping-Verfahren zu geben und deren Stellenwert bei der Katheterablation von VT zu diskutieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Epstein AE, Dimarco JP, Ellenbogen KA, et al. ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2008;117:350–408.

    Article  Google Scholar 

  2. Klein RC, Raitt MH, Wilkoff BL, et al. Analysis of implantable cardioverter defibrillator therapy in the Antiarrhythmics Versus Implantable Defibrillators (AVID) trial. J Cardiovasc Electrophysiol 2003;14:940–8.

    Article  PubMed  Google Scholar 

  3. Exner DV, Pinski SL, Wyse DG, et al. Electrical storm presages nonsudden death: the antiarrhythmics versus implantable defibrillators (AVID) trial. Circulation 2001;103:2066–71.

    PubMed  CAS  Google Scholar 

  4. Moss AJ, Greenberg H, Case RB, et al. Long-term clinical course of patients after termination of ventricular tachyarrhythmia by an implanted defibrillator. Circulation 2004; 110:3760–5.

    Article  PubMed  Google Scholar 

  5. Eckardt L, Breithardt G. Construction and interpretation of endocardial maps: from basic electrophysiology to 3D mapping. In: Shenasa M, ed. Cardiac mapping, 3rd edn. New York: Wiley-Blackwell, 2009:13–26.

    Google Scholar 

  6. Waldo AL, Henthorn RW, Plumb VJ, et al. Demonstration of the mechanism of transient entrainment and interruption of ventricular tachycardia with rapid atrial pacing. J Am Coll Cardiol 1984;3:422–30.

    PubMed  CAS  Google Scholar 

  7. Morady F, Kadish A, Rosenheck S, et al. Concealed entrainment as a guide for catheter ablation of ventricular tachycardia in patients with prior myocardial infarction. J Am Coll Cardiol 1991;17:678–89.

    Article  PubMed  CAS  Google Scholar 

  8. Stevenson WG, Khan H, Sager P, et al. Identification of reentry circuit sites during catheter mapping and radiofrequency ablation of ventricular tachycardia late after myocardial infarction. Circulation 1993;88:1647–70.

    PubMed  CAS  Google Scholar 

  9. El-Shalakany A, Hadjis T, Papageorgiou P, et al. Entrainment/mapping criteria for the prediction of termination of ventricular tachycardia by single radiofrequency lesion in patients with coronary artery disease. Circulation 1999; 99:2283–9.

    PubMed  CAS  Google Scholar 

  10. Gepstein L, Hayam G, Ben HS. A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results. Circulation 1997; 95:1611–22.

    PubMed  CAS  Google Scholar 

  11. Marchlinski FE, Callans DJ, Gottlieb CD, et al. Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation 2000;101:1288–96.

    PubMed  CAS  Google Scholar 

  12. Kistler PM, Rajappan K, Jahngir M, et al. The impact of CT image integration into an electroanatomic mapping system on clinical outcomes of catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 2006;17:1093–101.

    Article  PubMed  Google Scholar 

  13. Wittkampf FH, Wever EF, Derksen R, et al. LocaLisa: new technique for real-time 3-dimensional localization of regular intracardiac electrodes. Circulation 1999;99:1312–7.

    PubMed  CAS  Google Scholar 

  14. Wittkampf FH, Wever EF, Vos K, et al. Reduction of radiation exposure in the cardiac electrophysiology laboratory. Pacing Clin Electrophysiol 2000;23:1638–44.

    Article  PubMed  CAS  Google Scholar 

  15. Khoury DS, Taccardi B, Lux RL, et al. Reconstruction of endocardial potentials and activation sequences from intracavitary probe measurements. Localization of pacing sites and effects of myocardial structure. Circulation 1995;91:845–63.

    PubMed  CAS  Google Scholar 

  16. Ribbing M, Wasmer K, Monnig G, et al. Endocardial mapping of right ventricular outflow tract tachycardia using noncontact activation mapping. J Cardiovasc Electrophysiol 2003;14:602–8.

    Article  PubMed  Google Scholar 

  17. Peters NS, Jackman WM, Schilling RJ, et al. Human left ventricular endocardial activation mapping using a novel noncontact catheter. Circulation 1997;95:1658–60.

    PubMed  CAS  Google Scholar 

  18. Gornick CC, Adler SW, Pederson B, et al. Validation of a new noncontact catheter system for electroanatomic mapping of left ventricular endocardium. Circulation 1999;99:829–35.

    PubMed  CAS  Google Scholar 

  19. Kadish A, Hauck J, Pederson B, et al. Mapping of atrial activation with a noncontact, multielectrode catheter in dogs. Circulation 1999;99:1906–13.

    PubMed  CAS  Google Scholar 

  20. Schilling RJ, Peters NS, Davies DW. Feasibility of a noncontact catheter for endocardial mapping of human ventricular tachycardia. Circulation 1999;99:2543–52.

    PubMed  CAS  Google Scholar 

  21. Schneider MA, Ndrepepa G, Zrenner B, et al. Noncontact mapping-guided catheter ablation of atrial fibrillation associated with left atrial ectopy. J Cardiovasc Electrophysiol 2000;11:475–9.

    Article  PubMed  CAS  Google Scholar 

  22. Schalij MJ, van Rugge FP, Siezenga M, et al. Endocardial activation mapping of ventricular tachycardia in patients: first application of a 32-site bipolar mapping electrode catheter. Circulation 1998;98:2168–79.

    PubMed  CAS  Google Scholar 

  23. Tanner H, Hindricks G, Kottkamp H. Frequent ventricular tachycardias: antiarrhythmic drug treatment or catheter ablation? Herz 2005;30:613–8.

    Article  PubMed  Google Scholar 

  24. Sosa E, Scanavacca M, d’Avila A, et al. Endocardial and epicardial ablation guided by nonsurgical transthoracic epicardial mapping to treat recurrent ventricular tachycardia. J Cardiovasc Electrophysiol 1998;9:229–39.

    Article  PubMed  CAS  Google Scholar 

  25. Sosa E, Scanavacca M, d’Avila A, et al. Nonsurgical transthoracic epicardial approach in patients with ventricular tachycardia and previous cardiac surgery. J Interv Card Electrophysiol 2004;10:281–8.

    Article  PubMed  Google Scholar 

  26. De Paola AA, Melo WD, Tavora MZ, et al. Angiographic and electrophysiological substrates for ventricular tachycardia mapping through the coronary veins. Heart 1998;79:59–63.

    PubMed  Google Scholar 

  27. Furniss S, nil-Kumar R, Bourke JP, et al. Radiofrequency ablation of haemodynamically unstable ventricular tachycardia after myocardial infarction. Heart 2000;84:648–52.

    Article  PubMed  CAS  Google Scholar 

  28. Chun KR, Satomi K, Kuck KH, et al. Left ventricular outflow tract tachycardia including ventricular tachycardia from the aortic cusps and epicardial ventricular tachycardia. Herz 2007;32:226–32.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Eckardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckardt, L., Breithardt, G. Catheter Ablation of Ventricular Tachycardia. Herz 34, 187–196 (2009). https://doi.org/10.1007/s00059-009-3247-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-009-3247-0

Key Words:

Schlüsselwörter:

Navigation