Skip to main content
Log in

Long-term changes in thickness, live/dead bacterial ratio, and mineral content in biofilm on ceramic and stainless steel orthodontic attachments

Langfristige Veränderungen von Dicke, Verhältnis zwischen aktiven und nichtaktiven Bakterien sowie Mineraliengehalt des Biofilms auf kieferorthopädischen Attachments aus Keramik und aus Edelstahl

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Purpose

Fixed orthodontic appliances induce biofilm deposition, which harbors a microbial population harmful to the periodontal health of the individual. The present study evaluated the changes in thickness, live/dead bacterial ratio, and mineral content in dental biofilm over 6 months in patients with either stainless steel or ceramic orthodontic attachments.

Methods

Eighty patients who require fixed orthodontic appliance treatment with first premolar extraction for correcting their malocclusion were selected and bonded with either stainless steel or ceramic orthodontic attachments on the buccal side. The attached buttons were retrieved at different periods—1 week, 1 month, 3 months, and 6 months. They were stained and visualized through confocal microscopy to detect biofilm thickness and the ratio of live/dead bacteria. X‑ray diffraction was used to identify the presence of calcium and phosphorous.

Results

Ceramic attachments showed a greater increase in biofilm thickness in comparison to stainless steel attachments except in the initial 1‑week evaluation. A higher live/dead bacterial ratio was observed in stainless steel attachments than in their ceramic counterparts at all four evaluation periods. Both stainless steel and ceramic surfaces exhibited the presence of mineral deposition (calcium and phosphorous) at all periods.

Conclusions

More biofilm adhesion was observed over ceramic surfaces than over stainless steel orthodontic attachments. Stainless steel attachments exhibited biofilm with a higher live/dead bacterial ratio than their ceramic counterparts at all evaluation periods. The presence of calcium and phosphorous in the adhered biofilm, pointing toward its calcification process, was identified.

Zusammenfassung

Zielsetzung

Festsitzende kieferorthopädische Apparaturen führen zu Biofilmablagerungen, die eine für die parodontale Gesundheit des Einzelnen schädigende Mikroorganismenpopulation enthalten. In der vorliegenden Studie wurden die Veränderungen von Dicke, Verhältnis zwischen aktiven und nichtaktiven Bakterien und Mineraliengehalt des dentalen Biofilms über 6 Monate bei Patienten mit kieferorthopädischen Attachments aus Edelstahl oder Keramik untersucht.

Methoden

Achtzig Patienten, die eine festsitzende kieferorthopädische Behandlung mit Extraktion der ersten Prämolaren zur Korrektur ihrer Malokklusion benötigten, wurden ausgewählt und mit kieferorthopädischen Attachments aus Edelstahl oder aus Keramik auf der bukkalen Seite verklebt. Die befestigten Buttons wurden nach verschiedenen Zeiträumen – 1 Woche, 1 Monat, 3 Monate und 6 Monate – entnommen. Sie wurden angefärbt und mit Hilfe der konfokalen Mikroskopie visualisiert, um die Dicke des Biofilms und das Verhältnis von aktiven und nichtaktiven Bakterien zu ermitteln. Mittels Röntgendiffraktion wurde das Vorkommen von Kalzium und Phosphor nachgewiesen.

Ergebnisse

Keramikattachments wiesen im Vergleich zu Edelstahlattachments eine stärkere Zunahme der Biofilmdicke auf, außer in der ersten Bewertungsphase nach einer Woche. Das Verhältnis zwischen aktiven und nichtaktiven Bakterien war bei Attachments aus Edelstahl in allen 4 Bewertungszeiträumen höher als bei den Keramikattachments. Sowohl die Edelstahl- als auch die Keramikoberflächen wiesen in allen Zeiträumen Mineralablagerungen (Kalzium und Phosphor) auf.

Schlussfolgerungen

Auf Keramikoberflächen wurde eine stärkere Biofilmadhäsion beobachtet als auf kieferorthopädischen Attachments aus Edelstahl. Attachments aus rostfreiem Stahl wiesen in allen Untersuchungszeiträumen einen Biofilm mit einem höheren Verhältnis zwischen nichtaktiven und toten Bakterien auf als ihre Gegenstücke aus Keramik. Es wurde das Vorhandensein von Kalzium und Phosphor im adhärenten Biofilm festgestellt, was auf einen Kalzifizierungsprozess hindeutet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2

Similar content being viewed by others

References

  1. Lucchese A, Bondemark L, Marcolina M, Manuelli M (2018) Changes in oral microbiota due to orthodontic appliances: a systematic review. J Oral Microbiol 10(1):1476645. https://doi.org/10.1080/20002297.2018.1476645

    Article  PubMed  PubMed Central  Google Scholar 

  2. Marsh PD (1994) Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 8(2):263–271. https://doi.org/10.1177/08959374940080022001

    Article  PubMed  Google Scholar 

  3. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322. https://doi.org/10.1126/science.284.5418.1318

    Article  PubMed  Google Scholar 

  4. Marsh PD (2004) Dental plaque as a microbial biofilm. Caries Res 38(3):204–211. https://doi.org/10.1159/000077756

    Article  PubMed  Google Scholar 

  5. Anhoury P, Nathanson D, Hughes CV, Socransky S, Feres M, Chou LL (2002) Microbial profile on metallic and ceramic bracket materials. Angle Orthod 72(4):338–343

    PubMed  Google Scholar 

  6. Jeon DM, An JS, Lim BS, Ahn SJ (2020) Orthodontic bonding procedures significantly influence biofilm composition. Prog Orthod 21(1):14. https://doi.org/10.1186/s40510-020-00314-8

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chandki R, Banthia P, Banthia R (2011) Biofilms: a microbial home. J Indian Soc Periodontol 15(2):111–114. https://doi.org/10.4103/0972-124X.84377

    Article  PubMed  PubMed Central  Google Scholar 

  8. Khoroushi M, Kachuie M (2017) Prevention and treatment of white spot lesions in orthodontic patients. Contemp Clin Dent 8(1):11–19. https://doi.org/10.4103/ccd.ccd_216_17

    Article  PubMed  PubMed Central  Google Scholar 

  9. Apiwantanakul N, Chantarawaratit PO (2021) Cytotoxicity, genotoxicity, and cellular metal accumulation caused by professionally applied fluoride products in patients with fixed orthodontic appliances: a randomized clinical trial. J World Fed Orthod 10(3):98–104. https://doi.org/10.1016/j.ejwf.2021.06.001

    Article  PubMed  Google Scholar 

  10. Kragh KN, Hutchison JB, Melaugh G et al (2016) Role of multicellular aggregates in biofilm formation. mBio 7(2):e237. https://doi.org/10.1128/mBio.00237-16

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schulze A, Mitterer F, Pombo JP, Schild S (2021) Biofilms by bacterial human pathogens: clinical relevance—development, composition and regulation—therapeutical strategies. Microb Cell 8(2):28–56. https://doi.org/10.15698/mic2021.02.741

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stiefel P, Schmidt-Emrich S, Maniura-Weber K, Ren Q (2015) Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol 15:36. https://doi.org/10.1186/s12866-015-0376-x

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mei L, Chieng J, Wong C, Benic G, Farella M (2017) Factors affecting dental biofilm in patients wearing fixed orthodontic appliances. prog Orthod 18(1):4. https://doi.org/10.1186/s40510-016-0158-5

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hao Y, Huang X, Zhou X et al (2018) Influence of dental prosthesis and restorative materials interface on oral biofilms. Int J Mol Sci 19(10):3157. https://doi.org/10.3390/ijms19103157

    Article  PubMed  PubMed Central  Google Scholar 

  15. Andreotti AM, Sousa CA, Goiato MC et al (2018) In vitro evaluation of microbial adhesion on the different surface roughness of acrylic resin specific for ocular prosthesis. Eur J Dent 12(2):176–183. https://doi.org/10.4103/ejd.ejd_50_18

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wood SR, Kirkham J, Marsh PD, Shore RC, Nattress B, Robinson C (2000) Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J Dent Res 79(1):21–27. https://doi.org/10.1177/00220345000790010201

    Article  PubMed  Google Scholar 

  17. Pratten DH, Popli K, Germane N, Gunsolley JC (1990) Frictional resistance of ceramic and stainless steel orthodontic brackets. Am J Orthod Dentofacial Orthop 98(5):398–403. https://doi.org/10.1016/S0889-5406(05)81647-6

    Article  PubMed  Google Scholar 

  18. Suryavanshi S, Lingareddy U, Ahmed N, Neelakantappa KK, Sidiqha N, Minz M (2019) In vitro comparative evaluation of frictional resistance of connecticut new arch wires, stainless steel and titanium molybdenum alloy archwires against different brackets. Cureus 11(11):e6131. https://doi.org/10.7759/cureus.6131

    Article  PubMed  PubMed Central  Google Scholar 

  19. Park KH, Han SJ, Choi S, Kim KS, Park S, Park JH (2020) Surface roughness on the slots and wings of various ceramic self-ligating brackets and their potential concern on biofilm formation. J Clin Pediatr Dent 44(6):451–458. https://doi.org/10.17796/1053-4625-44.6.10

    Article  PubMed  Google Scholar 

  20. Dittmer MP, Hellemann CF, Grade S et al (2015) Comparative three-dimensional analysis of initial biofilm formation on three orthodontic bracket materials. Head Face Med 11:10. https://doi.org/10.1186/s13005-015-0062-0

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee GJ, Park KH, Park YG, Park HK (2010) A quantitative AFM analysis of nano-scale surface roughness in various orthodontic brackets. Micron 41(7):775–782. https://doi.org/10.1016/j.micron.2010.05.013

    Article  PubMed  Google Scholar 

  22. Kaufman HW, Kleinberg I (1973) X‑ray diffraction examination of calcium phosphate in dental plaque. Calcif Tissue Res 11(2):97–104. https://doi.org/10.1007/BF02547292

    Article  PubMed  Google Scholar 

  23. Boyd V, Cholewa OM, Papas KK (2008) Limitations in the use of fluorescein diacetate/propidium iodide (FDA/PI) and cell permeable nucleic acid stains for viability measurements of isolated islets of Langerhans. Curr Trends Biotechnol Pharm 2(2):66–84

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Krishnan MDS. M.Orth RCS FDS RCS PhD.

Ethics declarations

Conflict of interest

A. Krishnan, R. Rajendran, D. Damodaran, S.K. Manmadhan and V. Krishnan declare that they have no competing interests.

Ethical standards

Ethical approval for the study was obtained from the Institutional Ethical Committee of Sri Sankara Dental College, Trivandrum, Kerala, India (IEC, SSDC; reference number B2-256/19/IEC-SSDC-07). Consent to participate: Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, A., Rajendran, R., Damodaran, D. et al. Long-term changes in thickness, live/dead bacterial ratio, and mineral content in biofilm on ceramic and stainless steel orthodontic attachments. J Orofac Orthop 84 (Suppl 3), 251–258 (2023). https://doi.org/10.1007/s00056-023-00452-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-023-00452-8

Keywords

Schlüsselwörter

Navigation