Skip to main content
Log in

Size estimation of unerupted canines and premolars using various independent variables: a systematic review

Größenabschätzung nicht durchgebrochener Eckzähne und Prämolaren anhand verschiedener unabhängiger Variablen: eine systematische Übersicht

  • Review Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Introduction

Prediction of unerupted permanent teeth is an essential part of orthodontic diagnosis and treatment planning. This prediction is done by mixed dentition space analysis based on the estimation of mesiodistal dimensions of unerupted permanent canine and premolars from already erupted permanent teeth. Permanent mandibular incisors are most commonly used for prediction. Recent literature reveals that mandibular incisors are not accurate predictors and other independent variables have been introduced to make a more accurate and precise prediction. The objective of this paper was to evaluate the literature in light of a variety of independent variables and their predictive accuracy.

Methods

Electronic databases such as MEDLINE, PubMed, Scopus, Embase, Web of Science, CINAHL Plus were searched to identify articles published until September 2021.

Results

The search resulted in a total of 1098 articles, of which 24 papers met our inclusion criteria and were included in this review. Articles using permanent mandibular incisors only as a predictor were excluded during the eligibility assessment. The results show that various independent variables including mesiodistal and vestibulo-oral dimensions of permanent maxillary and mandibular incisors and molars, molar basal arch length, intermolar distance, maxillary and mandibular arch and gender have been used as predictors to more accurately determine mesiodistal width of unerupted canine and premolars in different populations.

Conclusion

Ethnic tooth size variations strongly emphasize the need to determine which independent variable gives a more accurate prediction of unerupted permanent teeth to develop a population-specific prediction model. This will play a significant role in managing space problems and developing malocclusions.

Zusammenfassung

Einleitung

Die Prädiktion noch nicht durchgebrochener bleibender Zähne ist ein wesentlicher Bestandteil der kieferorthopädischen Diagnose und Behandlungsplanung. Diese Vorhersage erfolgt durch eine Platzanalyse im Wechselgebiss, die auf der Schätzung der mesiodistalen Abmessungen der nicht durchgebrochenen bleibenden Eckzähne und Prämolaren anhand der bereits durchgebrochenen bleibenden Zähne beruht. Am häufigsten werden die bleibenden unteren Schneidezähne für die Vorhersage verwendet. Aus der neueren Literatur geht hervor, dass die Unterkieferschneidezähne keine genauen Prädiktoren sind und andere unabhängige Variablen eingeführt wurden, um eine genauere und präzisere Vorhersage zu treffen. Ziel dieser Arbeit war es, die Literatur im Hinblick auf eine Vielzahl unabhängiger Variablen und deren Vorhersagegenauigkeit zu evaluieren.

Methoden

Die elektronischen Datenbanken MEDLINE, PubMed, Scopus, Embase, Web of Science und CINAHL Plus wurden nach bis September 2021 veröffentlichten Artikeln durchsucht.

Ergebnisse

Die Suche ergab insgesamt 1098 Artikel, von denen 24 Arbeiten unsere Einschlusskriterien erfüllten und in diese Übersichtsarbeit aufgenommen wurden. Artikel, die nur die bleibenden unteren Schneidezähne als Prädiktor verwenden, wurden bei der Bewertung der Eignung ausgeschlossen. Die Ergebnisse zeigen, dass verschiedene unabhängige Variablen, einschließlich der mesiodistalen und vestibulooralen Abmessungen der bleibenden oberen und unteren Schneidezähne und Molaren, der Basalbogenlänge der Molaren, des Intermolarabstands, des Ober- und Unterkieferbogens und des Geschlechts, als Prädiktoren verwendet wurden, um die mesiodistale Breite der nicht durchgebrochenen Eckzähne und Prämolaren in verschiedenen Populationen genauer zu bestimmen.

Schlussfolgerung

Die ethnischen Unterschiede in der Zahngröße machen deutlich, dass es notwendig ist, zu bestimmen, welche unabhängige Variable eine genauere Vorhersage der nicht durchgebrochenen bleibenden Zähne ermöglicht, um ein bevölkerungsspezifisches Vorhersagemodell zu entwickeln. Dies wird eine wichtige Rolle bei der Behandlung von Platzproblemen und der Entwicklung von Fehlstellungen spielen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1

Similar content being viewed by others

References

  1. Moskowitz H (1973) Interceptive orthodontics. Am J Orthod 63(2):200–200

    Article  PubMed  Google Scholar 

  2. Ahluwalia P, Jodhka S, Thomas AM (2011) Prediction of mesio-distal width of canines and premolars in a sample of north Indian population. Indian J Dent Adv. https://doi.org/10.5866/3.3.568

    Article  Google Scholar 

  3. Moyer RE (ed) (1958) Handbook of orthodontics, 4th edn. Mosby-year book medical publisher, Chicago, p 577

    Google Scholar 

  4. Hunter WS (1978) Application of analysis of crowding and spacing of the teeth. Dent Clin North Am 22(4):563–577

    Article  PubMed  Google Scholar 

  5. Smith HP, King DL, Valencia R (1979) A comparison of three methods of mixed-dentition analyses. J Pedod 3(4):291–302

    PubMed  Google Scholar 

  6. Kerosuo H (2002) The role of prevention and simple interceptive measures in reducing the need for orthodontic treatment. Med Princ Pract 11(1):16–21

    Article  PubMed  Google Scholar 

  7. Tanaka MM, Johnston LE (1974) The prediction of the size of unerupted canines and premolars in a contemporary orthodontic population. J Am Dent Assoc 88(4):798–801

    Article  PubMed  Google Scholar 

  8. Bishara SE, Staley RN (1984) Mixed-dentition mandibular arch length analysis: a step-by-step approach using the revised Hixon-Oldfather prediction method. Am J Orthod 86(2):130–135

    Article  PubMed  Google Scholar 

  9. de Paula S, Almeida MA, Lee PC (1995) Prediction of mesiodistal diameter of unerupted lower canines and premolars using 45 degrees cephalometric radiography. Am J Orthod Dentofacial Orthop 107(3):309–314

    Article  PubMed  Google Scholar 

  10. Schirmer UR, Wiltshire WA (1997) Orthodontic probability tables for black patients of African descent: mixed dentition analysis. Am J Orthod Dentofacial Orthop 112(5):545–551

    Article  PubMed  Google Scholar 

  11. Bernabe E, Flores-Mir C (2005) Are the lower incisors the best predictors for the unerupted canine and premolars sums? an analysis of a Peruvian sample. Angle Orthod 75(2):202–207

    PubMed  Google Scholar 

  12. Lima Martinelli F et al (2005) Prediction of lower permanent canine and premolars width by correlation methods. Angle Orthod 75(5):805–808

    PubMed  Google Scholar 

  13. Staley RN et al (1984) Prediction of the widths of unerupted canines and premolars. J Am Dent Assoc 108(2):185–190

    Article  PubMed  Google Scholar 

  14. Staley RN, Kerber PE (1980) A revision of the Hixon and Oldfather mixed-dentition prediction method. Am J Orthod 78(3):296–302

    Article  PubMed  Google Scholar 

  15. Moyers RE (1988) Handbook of orthodontics. Year Book Medical Publishers, Chicago

    Google Scholar 

  16. Cattaneo C et al (2010) Comparative evaluation of the group of teeth with the best prediction value in the mixed dentition analysis. Eur J Paediatr Dent 11(1):23–26

    PubMed  Google Scholar 

  17. Luu NS et al (2011) The validity and reliability of mixed-dentition analysis methods: a systematic review. J Am Dent Assoc 142(10):1143–1153

    Article  PubMed  Google Scholar 

  18. Arslan SG et al (2009) Mixed-dentition analysis in a Turkish population. World J Orthod 10(2):135–140

    PubMed  Google Scholar 

  19. Durgekar SG, Naik V (2009) Evaluation of Moyers mixed dentition analysis in school children. Indian J Dent Res 20(1):26–30

    Article  PubMed  Google Scholar 

  20. Hashim HA, Al-Shalan TA (2003) Prediction of the size of un-erupted permanent cuspids and bicuspids in a Saudi sample: a pilot study. J Contemp Dent Pract 4(4):40–53

    Article  PubMed  Google Scholar 

  21. Legovic M, Novosel A, Legovic A (2003) Regression equations for determining mesiodistal crown diameters of canines and premolars. Angle Orthod 73(3):314–318

    PubMed  Google Scholar 

  22. Memon S, Fida M (2010) Comparison of three mixed dentition analysis methods in orthodontic patients at AKUH. J Coll Physicians Surg Pak 20(8):533–537

    PubMed  Google Scholar 

  23. Jaroontham J, Godfrey K (2000) Mixed dentition space analysis in a Thai population. Eur J Orthod 22(2):127–134

    Article  PubMed  Google Scholar 

  24. Al-Bitar ZB et al (2008) Mixed dentition analysis in a Jordanian population. Angle Orthod 78(4):670–675

    Article  PubMed  Google Scholar 

  25. Frankel HH, Benz EM (1986) Mixed dentition analysis for black Americans. Pediatr Dent 8(3):226–230

    PubMed  Google Scholar 

  26. Ling JY, Wong RW (2006) Tanaka-Johnston mixed dentition analysis for southern Chinese in Hong Kong. Angle Orthod 76(4):632–636

    PubMed  Google Scholar 

  27. Carrillo JJP et al (2017) Applicability of the Moyers’ probability tables in adolescents with different facial biotypes. Open Dent J 11:213–220

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brito FC, Nacif VC, Melgaco CA (2014) Mandibular permanent first molars and incisors as predictors of mandibular permanent canine and premolar widths: applicability and consistency of the method. Am J Orthod Dentofacial Orthop 145(3):393–398

    Article  PubMed  Google Scholar 

  29. Altherr ER, Koroluk LD, Phillips C (2007) Influence of sex and ethnic tooth-size differences on mixed-dentition space analysis. Am J Orthod Dentofacial Orthop 132(3):332–339

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cirulli N et al (2015) Mixed dentition space analysis of a southern Italian population: new regression equations for unerupted teeth. J Biol Regul Homeost Agents 29(2):515–520

    PubMed  Google Scholar 

  31. Alessandri Bonetti G et al (2011) Mixed dentition space analysis for a northern Italian population: new regression equations for unerupted teeth. Prog Orthod 12(2):94–99

    Article  PubMed  Google Scholar 

  32. Mengal N, Afzal A (2004) J Surg Pakistan Int 9(1):10–14

    Google Scholar 

  33. Pardede DAD, Budiardjo SB, Rizal MF (2017) Applicability of Tanaka-Johnston mixed-dentition analysis in indonesian children. J Int Dent Med Res 10:486–489

    Google Scholar 

  34. Giri J et al (2018) New regression equations for mixed dentition space analysis in Nepalese mongoloids. BMC Oral Health 18(1):214. https://doi.org/10.1186/s12903-018-0677-1

    Article  PubMed  PubMed Central  Google Scholar 

  35. Burhan AS, Nawaya FR (2014) Prediction of unerupted canines and premolars in a Syrian sample. Prog Orthod 15:4

    Article  PubMed  PubMed Central  Google Scholar 

  36. al-Khadra BH (1993) Prediction of the size of unerupted canines and premolars in a Saudi Arab population. Am J Orthod Dentofacial Orthop 104(4):369–372

    Article  PubMed  Google Scholar 

  37. Diagne F et al (2003) Mixed dentition analysis in a Senegalese population: elaboration of prediction tables. Am J Orthod Dentofacial Orthop 124(2):178–183

    Article  PubMed  Google Scholar 

  38. Abu Alhaija ES, Qudeimat MA (2006) Mixed dentition space analysis in a Jordanian population: comparison of two methods. Int J Paediatr Dent 16(2):104–110

    Article  PubMed  Google Scholar 

  39. Nourallah AW et al (2002) New regression equations for predicting the size of unerupted canines and premolars in a contemporary population. Angle Orthod 72(3):216–221

    PubMed  Google Scholar 

  40. Melgaco CA, de Sousa Araújo MT, de Oliveira Ruellas AC (2007) Mandibular permanent first molar and incisor width as predictor of mandibular canine and premolar width. Am J Orthod Dentofacial Orthop 132(3):340–345

    Article  PubMed  Google Scholar 

  41. Foneseca C (1961) Predicting of mesiodistal crown width of the canine premolars segment in maxillary dental arches. University of Tennessee School of Dentistry, Memphis, Tenn

    Google Scholar 

  42. Mittal S et al (2016) Predicting the mesiodistal width of unerupted canine and premolars by using width of the permanent mandibular incisors and first molar in the Himachal population. J Indian Soc Pedod Prev Dent 34(3):204–209

    Article  PubMed  Google Scholar 

  43. Toodehzaeim MH et al (2013) New regression equations for mixed dentition space analysis in an Iranian population. J Contemp Dent Pract 14(6):1156–1160

    Article  PubMed  Google Scholar 

  44. Boboc A, Dibbets J (2010) Prediction of the mesiodistal width of unerupted permanent canines and premolars: a statistical approach. Am J Orthod Dentofacial Orthop 137(4):503–507

    Article  PubMed  Google Scholar 

  45. Tome W et al (2011) Demonstration of a sex difference in the predictability of widths of unerupted permanent canines and premolars in a Japanese population. Angle Orthod 81(6):938–944

    Article  PubMed  PubMed Central  Google Scholar 

  46. Vedprakash SR et al (2021) Tanaka-Johnston mixed dentition analysis for Indian population. Eur J Mol Clin Med 8(3):3547–3557

    Google Scholar 

  47. Galvao M et al (2013) Applicability of Moyers analysis in mixed dentition: a systematic review. Dental Press J Orthod 18(6):100–105

    Article  PubMed  Google Scholar 

  48. Moher D et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151(4):264–269

    Article  PubMed  Google Scholar 

  49. Schardt C et al (2007) Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med Inform Decis Mak 7(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  50. Page MJ, McKenzie JE, Higgins JP (2018) Tools for assessing risk of reporting biases in studies and syntheses of studies: a systematic review. BMJ Open 8(3):e19703

    Article  PubMed  PubMed Central  Google Scholar 

  51. Downes MJ et al (2016) Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open 6(12):e11458

    Article  PubMed  PubMed Central  Google Scholar 

  52. Goyal RK et al (2014) Evaluation of mixed dentition analyses in north Indian population: a comparative study. Contemp Clin Dent 5(4):471–477

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mittar M, Dua VS, Wilson S (2012) Reliability of permanent mandibular first molars and incisors widths as predictor for the width of permanent mandibular and maxillary canines and premolars. Contemp Clin Dent 3(1):S8–S12

    PubMed  PubMed Central  Google Scholar 

  54. Bhatnagar A et al (2017) Accuracy and evaluation of a new regression equation in predicting the width of unerupted permanent canines and premolar teeth. Eur Arch Paediatr Dent 18(1):31–37

    Article  PubMed  Google Scholar 

  55. Shah S et al (2013) Applicability of regression equation using widths of mandibular permanent first molars and incisors as a predictor of widths of mandibular canines and premolars in contemporary Indian population. J Indian Soc Pedod Prev Dent 31(3):135–140

    Article  PubMed  Google Scholar 

  56. Tikku T et al (2013) A new proposed regression equation for mixed dentition analysis using the sum of permanent mandibular four incisors and first molar as a predictor of width of unerupted canine and premolars in a sample of North Indian population. J Orthod Sci 2(4):124–129

    Article  PubMed  PubMed Central  Google Scholar 

  57. Memon S, Fida M (2011) Development of a prediction equation for the estimation of mandibular canine and premolar widths from mandibular first permanent molar and incisor widths. Eur J Orthod 34(3):340–344

    Article  PubMed  Google Scholar 

  58. Shetty RM et al (2019) A newly proposed regression equation for mixed dentition analysis using the sum of the width of permanent mandibular central incisors and permanent mandibular first molars as a predictor of width of unerupted canine and premolars. Pesqui bras odontopediatria clín integr 19(1):4643

    Article  Google Scholar 

  59. Kuswandari S, Nishino M, Arita K, Abe Y (2006) Mixed dentition space analysis for Indonesian Javanese children. Pediat Dent J 16(1):74–83

    Article  Google Scholar 

  60. Talebi M et al (2010) Regression equations for predicting the size of unerupted canines and premolars in an Iranian population: a pilot study. J Contemp Dent Pract 11(5):33–40

    Article  PubMed  Google Scholar 

  61. Vanjari K, Nuvvula S, Kamatham R (2015) Prediction of canine and premolar size using the widths of various permanent teeth combinations: a cross-sectional study. Contemp Clin Dent 6(1):S210–20

    PubMed  PubMed Central  Google Scholar 

  62. Ibrahim IA et al (2011) A digital method to predict the mesiodistal widths of canines and premolars in an Egyptian sample. J Clin Pediatr Dent 35(4):421–427

    Article  PubMed  Google Scholar 

  63. Shahid F, Alam MK, Khamis MF (2016) New prediction equations for the estimation of maxillary mandibular canine and premolar widths from mandibular incisors and mandibular first permanent molar widths: a digital model study. Korean J Orthod 46(3):171–179

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bherwani AK, Fida M (2011) Development of a prediction equation for the mixed dentition in a Pakistani sample. Am J Orthod Dentofacial Orthop 140(5):626–632

    Article  PubMed  Google Scholar 

  65. Buwembo W et al (2012) Prediction of width of un-erupted incisors, canines and premolars in a Ugandan population: a cross sectional study. BMC Oral Health 12(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bugaighis I, Karanth D, Elmouadeb H (2013) Mixed dentition analysis in Libyan schoolchildren. J Orthod Sci 2(4):115–119

    Article  PubMed  PubMed Central  Google Scholar 

  67. Diagne F et al (2004) Mixed dentition analysis in a Moroccan population. Odontostomatol Trop 27(108):5–10

    PubMed  Google Scholar 

  68. Flores-Mir C et al (2014) Measurement accuracy and reliability of tooth length on conventional and CBCT reconstructed panoramic radiographs. Dental Press J Orthod 19(5):45–53

    Article  PubMed  PubMed Central  Google Scholar 

  69. Paredes V, Gandia JL, Cibrian R (2006) A new, accurate and fast digital method to predict unerupted tooth size. Angle Orthod 76(1):14

    PubMed  Google Scholar 

  70. Bishara SE, Jakobsen JR (1998) Comparison of two nonradiographic methods of predicting permanent tooth size in the mixed dentition. Am J Orthod Dentofacial Orthop 114(5):573–576

    Article  PubMed  Google Scholar 

  71. Staley RN et al (1983) Prediction of the combined right and left canine and premolar widths in both arches of the mixed dentition. Pediatr Dent 5(1):57–60

    PubMed  Google Scholar 

  72. Hixon E, Oldfather RE (1958) Estimation of the sizes of uneruptedcuspid and bicuspid teeth. Angle Orthod 28:236–240

    Google Scholar 

  73. Angle EH, Grünberg J, Oppenheim A (1908) Behandlung der Okklusionsanomalien der Zähne: Angle’s system

    Google Scholar 

  74. Peck H, Peck S (1972) An index for assessing tooth shape deviations as applied to the mandibular incisors. Am J Orthod Dentofacial Orthop 61(4):384–401

    Article  Google Scholar 

  75. Smith RJ, Davidson WM, Gipe DP (1982) Incisor shape and incisor crowding: a re-evaluation of the Peck and Peck ratio. Am J Orthod 82(3):231–235

    Article  PubMed  Google Scholar 

  76. Puneky PJ, Sadowsky C, BeGole EA (1984) Tooth morphology and lower incisor alignment many years after orthodontic therapy. Am J Orthod 86(4):299–305

    Article  PubMed  Google Scholar 

  77. Fisk RO, Markin S (1979) Limitations of the mixed dentition analysis. Ont Dent 56(6):16–20

    PubMed  Google Scholar 

  78. Al-Khateeb SN, Abu Alhaija ES (2006) Tooth size discrepancies and arch parameters among different malocclusions in a Jordanian sample. Angle Orthod 76(3):459–465

    PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the librarian of the University of Western Australia for guiding us in searching databases for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abaid BDS, M.Phil. (Oral Biology).

Ethics declarations

Conflict of interest

S. Abaid, S. Zafar, E. Kruger and M. Tennant declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abaid, S., Zafar, S., Kruger, E. et al. Size estimation of unerupted canines and premolars using various independent variables: a systematic review. J Orofac Orthop 84, 164–177 (2023). https://doi.org/10.1007/s00056-022-00392-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-022-00392-9

Keywords

Schlüsselwörter

Navigation