Skip to main content
Log in

Friction and archwire engagement in contemporary self-ligating appliance systems

An in vitro comparison

Friktion und Bogenkontakt bei modernen selbstligierenden Zahnspangensystemen

Ein In-vitro-Vergleich

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to compare classical friction (FR) in passive self-ligating brackets (P-SLBs), active self-ligating brackets (A-SLBs) and a traditional twin bracket, in vitro, and to identify the point of initiation of bracket–archwire engagement.

Methods

Nine bracket systems of 0.022 in slot size were FR tested: 5 P‑SLB systems; 4 A‑SLB systems; and a control group of twin brackets with elastomeric ligatures. Single upper right central incisor brackets were mounted on a custom metal fixture for testing. Straight sections of various round and rectangular nickel–titanium (NiTi) archwires (0.016, 0.018, 0.018 × 0.018, 0.020 × 0.020, 0.016 × 0.022, 0.017 × 0.025, 0.019 × 0.025, and 0.021 × 0.025 in) were ligated to the bracket and peak static FR (cN) was measured with an Instron Universal Testing Machine. Ten unique tests each utilizing a new bracket and new archwire were conducted for each group in the dry state.

Results

FR was significantly different between control, P‑SLB and A‑SLB systems (P < 0.001). P‑SLB groups displayed no significant differences in FR between each other, regardless of archwire size. A‑SLB groups did exhibit significant differences in FR between each other depending on both the bracket system and archwire size. Each A‑SLB system tested possessed a distinctly different pattern of initiation of bracket–archwire engagement.

Conclusions

FR between the archwire and bracket slot differs between P‑SLB and A‑SLB systems, with a distinct pattern of FR and bracket–archwire engagement for each A‑SLB system. Understanding the different bracket–wire interactions of SLB systems should help orthodontic clinicians to plan effective and efficient biomechanics with the bracket system of their choice.

Zusammenfassung

Zielsetzung

Ziel dieser Studie war es, die mechanische Friktion (FR) bei passiven selbstligierenden Brackets (P-SLBs), aktiven selbstligierenden Brackets (A-SLBs) und bei einem konventionellen Doppelbracket in vitro miteinander zu vergleichen und den Punkt zu bestimmen, an dem das Zusammenwirken von Bracket und Bogendraht einsetzt.

Methoden

Neun Bracketsysteme mit einer Slotgröße von 0,022 wurden getestet: 5 P‑SLB-Systeme, 4 A‑SLB-Systeme und eine Kontrollgruppe bestehend aus Doppelbrackets mit elastomeren Ligaturen. Einzelne Brackets für den oberen rechten mittleren Schneidezahn wurden für die Tests auf eine individuelle Metallvorrichtung montiert. Gerade Abschnitte verschiedener runder und rechteckiger NiTi(Nickel-Titan)-Drähte (0,016, 0,018, 0,018 × 0,018, 0,020 × 0,020, 0,016 × 0,022, 0,017 × 0,025, 0,019 × 0,025 und 0,021 × 0,025 Zoll) wurden mit dem Bracket verbunden, und die statische FR-Spitze (cN) wurde mit einer Instron Universalprüfmaschine gemessen. Für jede Gruppe wurden 10 Einzeltests mit jeweils einem neuen Bracket und einem neuen Drahtbogen im trockenen Zustand durchgeführt.

Ergebnisse

Die FR war signifikant unterschiedlich zwischen den Kontroll‑, P‑SLB- und A‑SLB-Systemen (p < 0,001). Die P‑SLB-Gruppen wiesen keine signifikanten Unterschiede in der FR untereinander auf, unabhängig von der Größe des Bogens. Die A‑SLB-Gruppen wiesen signifikante Unterschiede in der FR auf, die in Abhängigkeit vom Bracketsystem und der Bogengröße variierten. Jedes getestete A‑SLB-System wies ein deutlich unterschiedliches Muster bei der Initiierung des Zusammenwirkens von Bracket und Bogendraht auf.

Schlussfolgerungen

Die FR zwischen dem Bogendraht und dem Bracketslot unterscheidet sich zwischen P‑SLB- und A‑SLB-Systemen, wobei für jedes A‑SLB-System ein anderes Muster der FR und des Zusammenwirkens zwischen Bracket und Bogendraht vorliegt. Das Verständnis der unterschiedlichen Bracket-Draht-Interaktionen von SLB-Systemen sollte Kieferorthopäden dabei unterstützen, eine effektive und effiziente Biomechanik mit dem Bracketsystem ihrer Wahl zu planen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6

Similar content being viewed by others

Abbreviations

A‑GCX:

In-Ovation X

A‑Emp:

Empower 2 Active

ANOVA:

Analysis of variance

A‑SLB:

Active self-ligating bracket

A‑Spd:

Speed

A‑Vic:

Victory Series SL

BI:

Binding

C‑Vic:

Victory Series

FR:

Friction

In:

Inch(es)

NiTi:

Nickel titanium

NO:

Notching

P‑Alt:

Altitude SL

P‑Car:

Carrier SLX

P‑Dmn:

Damon Q

P‑Emp:

Empower 2 Passive

P‑H4:

H4

P‑SLB:

Passive self-ligating bracket

RS:

Resistance to sliding

SD:

Standard deviation

SLB:

Self-ligating bracket

SS:

Stainless steel

References

  1. Burrow JS (2009) Friction and resistance to sliding in orthodontics: a critical review. Am J Orthod Dentofacial Orthop 135(4):442–447

    Article  PubMed  Google Scholar 

  2. Chen SS, Greenlee GM, Kim JE, Smith CL, Huang GJ (2010) Systematic review on self-ligating brackets. Am J Orthod Dentofacial Orthop 137(6):726.e1–726.e18

    Article  PubMed  Google Scholar 

  3. Fleming PS, Johal AT (2010) Self-ligating brackets in orthodontics: a systematic review. Angle Orthod 80(3):575–584

    Article  PubMed  PubMed Central  Google Scholar 

  4. Baccetti T, Franchi L, Camporesi M, Defraia E (2011) Orthodontic forces released by low-friction versus conventional systems during alignment of apically or buccally malposed teeth. Eur J Orthod 33(1):50–54

    Article  PubMed  Google Scholar 

  5. Matarese G, Nucera R, Militi A, Mazza M, Portelli M, Festa F et al (2008) Evaluation of frictional forces during dental alignment: an experimental model with 3 nonleveled brackets. Am J Orthod Dentofacial Orthop 133(5):708–715

    Article  PubMed  Google Scholar 

  6. Heo W, Baek SH (2011) Friction properties according to vertical and horizontal tooth displacement and bracket type during initial leveling and alignment. Angle Orthod 81(4):653–661

    Article  PubMed  PubMed Central  Google Scholar 

  7. Marshall SD, Currier GF, Hatch NE, Huang GJ, Nah H‑D, Owens SE et al (2010) Self-ligating bracket claims. Am J Orthod Dentofacial Orthop 138(2):128–131

    Article  PubMed  Google Scholar 

  8. Bennett JC, McLaughlin RP (2014) Fundamentals of orthodontic treatment mechanics. LeGrande, London

    Google Scholar 

  9. Hanson GH (1980) The SPEED system: a report on the development of a new edgewise appliance. Am J Orthod 78(3):243–265

    Article  PubMed  Google Scholar 

  10. Badawi HM, Toogood RW, Carey JR, Heo G, Major PW (2008) Torque expression of self-ligating brackets. Am J Orthod Dentofacial Orthop 133(5):719–728

    Article  Google Scholar 

  11. Meling TR, Odegaard J (1998) On the variability of cross-sectional dimensions and torsional properties of rectangular nickel-titanium arch wires. Am J Orthod Dentofacial Orthop 113(5):546–557

    Article  PubMed  Google Scholar 

  12. Braun S, Bluestein M, Moore MB, Benson G (1999) Friction in perspective. Am J Orthod Dentofacial Orthop 115(6):619–627

    Article  PubMed  Google Scholar 

  13. Kusy RP, Whitley JQ (1999) Influence of archwire and bracket dimensions on sliding mechanics: derivations and determinations of the critical contact angles for binding. Eur J Orthod 21(2):199–208

    Article  PubMed  Google Scholar 

  14. Kusy RP, Whitley JQ, Prewitt MJ (1991) Comparison of the frictional coefficients for selected archwire-bracket slot combinations in the dry and wet states. Angle Orthod 61(4):293–302

    PubMed  Google Scholar 

  15. Thorstenson GA, Kusy RP (2001) Resistance to sliding of self-ligating brackets versus conventional stainless steel twin brackets with second-order angulation in the dry and wet (saliva) states. Am J Orthod Dentofacial Orthop 120(4):361–370

    Article  PubMed  Google Scholar 

  16. Thorstenson GA, Kusy RP (2003) Effects of ligation type and method on the resistance to sliding of novel orthodontic brackets with second-order angulation in the dry and wet states. Angle Orthod 73(4):418–430

    PubMed  Google Scholar 

  17. Ehsani S, Mandich MA, El-Baily TH, Flores-Mir C (2009) Frictional resistance in self-ligating orthodontic brackets and conventionally ligated brackets. A systematic review. Angle Orthod 79(3):592–601

    Article  PubMed  Google Scholar 

  18. Fathimani M, Melenka GW, Romanyk DL, Toogood RW, Heo G, Carey JP et al (2015) Development of a standardized testing system for orthodontic sliding mechanics. Prog Orthod 16:14

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cacciafesta V, Sfondrini MF, Ricciardi A, Scribante A, Klersy C, Auricchio F (2003) Evaluation of friction of stainless steel and esthetic self-ligating brackets in various bracket-archwire combinations. Am J Orthod Dentofacial Orthop 124(4):395–402

    Article  PubMed  Google Scholar 

  20. Thorstenson GA, Kusy RP (2002) Effect of archwire size and material on the resistance to sliding of self-ligating brackets with second-order angulation in the dry state. Am J Orthod Dentofacial Orthop 122(3):295–305

    Article  PubMed  Google Scholar 

  21. Franchi L, Baccetti T, Camporesi M, Barbato E (2008) Forces released during sliding mechanics with passive self-ligating brackets or nonconventional elastomeric ligatures. Am J Orthod Dentofacial Orthop 133(1):87–90

    Article  Google Scholar 

  22. Stefanos S, Secchi AG, Coby G, Tanna N, Mante F (2010) Friction between various self-ligating brackets and archwire couples during sliding mechanics. Am J Orthod Dentofacial Orthop 138(4):463–467

    Article  PubMed  Google Scholar 

  23. Budd S, Daskalogiannakis J, Tompson BD (2008) A study of the frictional characteristics of four commercially available self-ligating bracket systems. Eur J Orthod 30(6):645–653

    Article  PubMed  Google Scholar 

  24. Tecco S, Di Iorio D, Nucera R, Di Bisceglie B, Cordasco G, Festa F (2011) Evaluation of the friction of self-ligating and conventional bracket systems. Eur J Dent 5(3):310–317

    Article  PubMed  PubMed Central  Google Scholar 

  25. Khambay B, Millett D, McHugh S (2004) Evaluation of methods of archwire ligation on frictional resistance. Eur J Orthod 26(3):327–332

    Article  PubMed  Google Scholar 

  26. McLaughlin RP, Bennett JC (2015) Evolution of treatment mechanics and contemporary appliance design in orthodontics: a 40-year perspective. Am J Orthod Dentofacial Orthop 147(6):654–662

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thank you to Clayton Cook at Western University Machine Services who collaborated in the development of the custom bracket mounting apparatus used in this study.

Funding

The authors declared that this study has received no funding.

Author information

Authors and Affiliations

Authors

Contributions

MG, AR and AT carried out the experimental set-up, testing and data acquisition. All authors were involved in the design of the study, interpretation of the data, and writing of the manuscript. Furthermore, each author has read and approved the final manuscript.

Corresponding author

Correspondence to Ali Tassi BSc DDS MClD FRCD(C).

Ethics declarations

Conflict of interest

M. Greene, A. Rizkalla, T. Burkhart, A. Mamandras and A. Tassi declare that they have no competing interests.

Ethical standards

Ethics approval was not required as the research did not involve human participants.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Not Applicable

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greene, M., Rizkalla, A., Burkhart, T. et al. Friction and archwire engagement in contemporary self-ligating appliance systems. J Orofac Orthop 84 (Suppl 2), 65–73 (2023). https://doi.org/10.1007/s00056-021-00361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-021-00361-8

Keywords

Schlüsselwörter

Navigation