Skip to main content
Log in

Comparison of dental arch forms created from assessment of teeth, alveolar bone, and the overlying soft tissue

Vergleich von Zahnbogenformen, die aus der Beurteilung von Zähnen, Alveolarknochen und dem darüber liegenden Weichgewebe erstellt wurden

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objective

The objective of this study was to determine whether there are differences among the arch forms created from assessments of tooth surfaces, alveolar bone, and overlying soft tissue.

Materials and methods

This study included 18 individuals who presented with a class I malocclusion, mild crowding, and a cone beam computed tomography (CBCT) image of good diagnostic quality. The facial axis point was chosen to create the arch form from teeth, the Bowman–Kau (BK) point was used to establish the arch form from alveolar bone, and the WALA ridge was used to calculate the soft tissue arch form. A predetermined algorithm was then used to create five separate arch forms per patient. These arch forms were categorized according to shape and were superimposed. The distances between the tooth-, bone-, and soft tissue-derived arch forms were calculated.

Results

The calculated distances between all arch forms were significantly different. The distances between the tooth- and bone-derived arch forms were larger for the mandible compared to the maxilla (mean 3.30 vs. 2.48 mm, respectively). The larger distances seemed to be located more posteriorly in the arch than anteriorly. The distance between tooth- and soft tissue-derived arch forms was largest for the second premolar (2.35 ± 1.59 mm), first molar (2.86 ± 0.63 mm), and second molar (3.25 ± 0.87 mm). There were no significant differences in the distance between the tooth- and either bone- or soft tissue-derived arch forms with regard to sex.

Conclusions

The arch form shapes obtained from the teeth, alveolar bone, and soft tissue are correlated and show the same general shape. Although future large-scale studies are needed for confirmation, our results suggest that evaluating the easily visualized external features, including the WALA ridge, can adequately predict the underlying bone shape, and thus the desired arch form. Nevertheless, the shapes vary significantly between patients, so the final treatment plan should be individualized rather than relying on over-simplified general wire shapes.

Zusammenfassung

Zielsetzung

Ziel dieser Studie war es, festzustellen, ob es Unterschiede zwischen den Zahnbogenformen gibt, die sich aus der Beurteilung der Zahnoberflächen, des Alveolarknochens und des darüber liegenden Weichgewebes ergeben.

Materialien und Methoden

An der Studie nahmen 18 Patienten teil, die sich mit einer Klasse-I-Malokklusion, leichtem Engstand und einer CBCT(digitale Volumentomographie)-Aufnahme von guter diagnostischer Qualität vorstellten. Der faziale Achsenpunkt wurde gewählt, um die Bogenform aus den Zähnen zu erstellen, der BK(Bowman-Kau)-Punkt wurde verwendet, um die Bogenform aus dem Alveolarknochen zu bestimmen, und der WALA-Kamm, um die Bogenform aus dem Weichgewebe zu berechnen. Anhand eines vorgegebenen Algorithmus wurden dann fünf separate Bogenformen pro Patient erstellt, nach ihrer Form kategorisiert und überlagert. Die Abstände zwischen den aus den Zähnen, dem Knochen und dem Weichgewebe abgeleiteten Bogenformen wurden berechnet.

Ergebnisse

Die berechneten Abstände zwischen allen Bogenformen waren signifikant unterschiedlich. Die Abstände zwischen den zahn- und knochenabgeleiteten Bogenformen waren für den Unterkiefer größer als für den Oberkiefer (Mittelwert 3,30 vs. 2,48 mm). Die größeren Abstände schienen sich eher posterior im Bogen zu befinden als anterior. Der Abstand zwischen zahn- und weichgewebeabgeleiteten Bogenformen war am größten für den zweiten Prämolaren (2,35 ± 1,59 mm), den ersten Molaren (2,86 ± 0,63 mm) und den zweiten Molaren (3,25 ± 0,87 mm). Es gab keine signifikanten Unterschiede im Abstand zwischen den zahn- und knochen- bzw. weichgewebebasierten Bogenformen in Bezug auf das Geschlecht.

Schlussfolgerungen

Die aus den Zähnen, dem Alveolarknochen und dem Weichgewebe gewonnenen Bogenformen sind korreliert und zeigen insgesamt grundsätzlich die gleiche Form. Obwohl zukünftige groß angelegte Studien zur Bestätigung erforderlich sind, deuten unsere Ergebnisse darauf hin, dass die Auswertung der leicht zu visualisierenden äußeren Merkmale, einschließlich des WALA-Kamms, die zugrunde liegende Knochenform und damit die gewünschte Bogenform adäquat vorhersagen kann. Da die Formen jedoch zwischen den Patienten erheblich variieren, sollte der endgültige Behandlungsplan individualisiert werden, statt sich auf vereinfachte generelle Drahtformen zu verlassen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6

Similar content being viewed by others

References

  1. Braun S, Hnat WP, Fender DE, Legan HL (1998) The form of the human dental arch. Angle Orthod 68(1):29–36

    PubMed  Google Scholar 

  2. Proffit WR (1978) Equilibrium theory revisited: factors influencing position of the teeth. Angle Orthod 48(3):175–186

    PubMed  Google Scholar 

  3. Lee RT (1999) Arch width and form: a review. Am J Orthod Dentofacial Orthop 3(115):305–313

    Article  Google Scholar 

  4. Gupta D, Miner RM, Arai K, Will LA (2010) Comparison of the mandibular dental and basal arch forms in adults and children with class I and class II malocclusions. Am J Orthod Dentofacial Orthop 138(1):10e1–10e8 (discussion –1)

    Google Scholar 

  5. Andrews LFAW (2000) The six elements of orofacial harmony. Andrews J 1:13–22

    Google Scholar 

  6. Ball RL, Miner RM, Will LA, Arai K (2010) Comparison of dental and apical base arch forms in Class II Division 1 and Class I malocclusions. Am J Orthod Dentofacial Orthop 138(1):41–50

    Article  Google Scholar 

  7. Ronay V, Miner RM, Will LA, Arai K (2008) Mandibular arch form: the relationship between dental and basal anatomy. Am J Orthod Dentofacial Orthop 134(3):430–438

    Article  Google Scholar 

  8. Knox J, Jones M, Durning P (1993) An ideal preformed archwire? Br J Orthod 20(1):65–70

    Article  Google Scholar 

  9. Gafni Y, Tzur-Gadassi L, Nojima K, McLaughlin RP, Abed Y, Redlich M (2011) Comparison of arch forms between Israeli and North American white populations. Am J Orthod Dentofacial Orthop 139(3):339–344

    Article  Google Scholar 

  10. Kook YA, Nojima K, Moon HB, McLaughlin RP, Sinclair PM (2004) Comparison of arch forms between Korean and North American white populations. Am J Orthod Dentofacial Orthop 126(6):680–686

    Article  Google Scholar 

  11. Hatcher DC (2010) Operational principles for cone-beam computed tomography. J Am Dent Assoc 141(Suppl 3):3S–6S

    Article  Google Scholar 

  12. Kau CH (2011) Creation of the virtual patient for the study of facial morphology. Facial Plast Surg Clin North Am 19(4):615–622

    Article  Google Scholar 

  13. Kau CH, Li JL, Li Q, Abou Kheir N (2014) Update on cone beam technology and orthodontic analysis. Dent Clin North Am 58(3):653–669

    Article  Google Scholar 

  14. Palomo JM, Kau CH, Palomo LB, Hans MG (2006) Three-dimensional cone beam computerized tomography in dentistry. Dent Today 25(11):130–132–5

    PubMed  Google Scholar 

  15. Lightheart KG, English JD, Kau CH, Akyalcin S, Bussa HI Jr., McGrory KR et al (2012) Surface analysis of study models generated from OrthoCAD and cone-beam computed tomography imaging. Am J Orthod Dentofacial Orthop 141(6):686–693

    Article  Google Scholar 

  16. Torassian G, Kau CH, English JD, Powers J, Bussa HI, Salas-Lopez MA et al (2010) Digital models vs plaster models using alginate and alginate substitute materials. Angle Orthod 80(4):474–481

    Article  Google Scholar 

  17. Creed B, Kau CH, English JD, Xia JJ, Lee RP (2011) A comparison of the accuracy of linear measurements obtained from cone beam computerized tomography images and digital models. Semin Orthod 17(1):49–56

    Article  Google Scholar 

  18. Berco M, Rigali PH Jr., Miner RM, DeLuca S, Anderson NK, Will LA (2009) Accuracy and reliability of linear cephalometric measurements from cone-beam computed tomography scans of a dry human skull. Am J Orthod Dentofacial Orthop 136(1):17 e1–17 e9 (discussion –8)

    Google Scholar 

  19. O’Neil R (2011) The comparison of dental arch forms obtained from teeth, alveolar bone and the overlaying soft tissue. University of Alabama Birmingham, Birmingham

    Google Scholar 

  20. Bowman M, Kau CH, Pan P (2012) Comparing Arch forms from teeth and alveolar bone—Asian Population. 2012 AADR Annual Meeting, Tampa, 21–24 March 2012

    Google Scholar 

  21. Lundstrom A (1925) Malocclusion of the teeth regarded as a problem in correction with the apical base. Int J Orthod Oral Surg Radiogr 11:591–602

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Kathlyn Bowman and Dr. Philip Pan for their work on the KB point.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung H. Kau BDS, MScD, MBA, PhD, FDS, FFD, FAMS.

Ethics declarations

Conflict of interest

R. O’Neil and C.H. Kau declare that they have no competing interests.

Ethical standards

Ethics approval was granted by the Institution Review Board (IRB) of the University of Alabama at Birmingham. All patient provided consent for the imaging and treatment, and for the publication of their data. Consent for publication has been obtained by the authors as outlined by the IRB. Consent for 3D CBCT were obtained from each patient.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was part of the Masters of Science Thesis for Dr. Rick O’Neil for the completion of the Orthodontic Residency Program.

Availability of data and materials

Supporting data is available upon request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Neil, R., Kau, C.H. Comparison of dental arch forms created from assessment of teeth, alveolar bone, and the overlying soft tissue. J Orofac Orthop 82, 413–421 (2021). https://doi.org/10.1007/s00056-021-00282-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-021-00282-6

Keywords

Schlüsselwörter

Navigation