Abstract
Purpose
The aim was to study the effects of micro-osteoperforations (MOPs) on miniscrew-supported maxillary molar distalization.
Methods
As part of a single center, split-mouth, randomized clinical trial, 20 eligible subjects were randomly recruited from patients who had applied to the orthodontics department of a university dental hospital. In the experimental group, subjects were randomized to receive MOPs to either the left or right maxillary molar region (n = 10). The control group (n = 10) and the contralateral sides of the experimental group (n = 10) did not receive any MOPs. In both groups, distalization of the maxillary molars was performed by miniscrew-supported distalization appliances. Using 3D models, maxillary molar distalization at 3, 6, 9, and 12 weeks was measured. Pain, discomfort, eating difficulty, and speech problem levels were assessed using a visual analog scale (VAS 0–10). Periodontal evaluations were performed.
Results
In all, 18 subjects completed the study. The mean amount of tooth movement was significantly greater on the MOP side compared to contralateral side of the experimental group at all time points. After 12 weeks, the maxillary molars on the MOP side moved 1.17-fold more than those on the contralateral side. No significant differences were found regarding amount of tooth movement between the control group and the MOP and contralateral sides of the experimental group. The rates of tooth movement in the MOP sides of the experimental group, contralateral sides of the experimental group, and the control group were 0.029, 0.025, and 0.028 mm/day, respectively. Pain VAS scores after intervention were significantly increased on the MOP side compared with the contralateral side of the experimental group but not at any other time point. No differences in periodontal scores between the groups were observed.
Conclusions
A 1.17-fold increase in the rate of tooth movement in the MOP group compared with the contralateral side was recorded. However the accelerating effect of MOPs was lower than expected. The mean pain level was statistically greater in the MOP group compared to the contralateral side only on the first day of application.
Zusammenfassung
Zielsetzung
Ziel war es, die Auswirkungen von Mikroosteoperforationen (MOPs) auf die mit Minischrauben unterstützte Molarendistalisierung im Oberkiefer zu untersuchen.
Methoden
Im Rahmen einer randomisierten klinischen Split-mouth‑, Single-center-Studie wurden 20 geeignete Probanden zufällig aus den Patienten rekrutiert, die sich an der kieferorthopädischen Abteilung einer Universitätszahnklinik vorgestellt hatten. In der Versuchsgruppe erhielten die Probanden MOPs, randomisiert entweder in der linken oder der rechten oberen Molarenregion (n = 10). Die Kontrollgruppe (n = 10) und die kontralateralen Seiten der Versuchsgruppe (n = 10) erhielten keine MOPs. In beiden Gruppen wurde die Distalisierung der Oberkiefermolaren mit Hilfe von minischraubengestützten Distalisierungsgeräten durchgeführt. Anhand von 3‑D-Modellen wurde die maxilläre Molarendistalisierung nach 3, 6, 9 und 12 Wochen gemessen. Schmerz, Beschwerden, Ess- und Sprechstörungen wurden unter Verwendung einer visuellen Analogskala (VAS 0-10) erfasst. Es wurden Zahnfleischuntersuchungen durchgeführt.
Ergebnisse
Insgesamt haben 18 Probanden die Studie abgeschlossen. Der mittlere Betrag der Zahnbewegung war zu allen Zeitpunkten auf der MOP-Seite signifikant höher als auf der kontralateralen Seite der Versuchsgruppe. Nach 12 Wochen hatten sich die Oberkiefermolaren auf der MOP-Seite 1,17-mal mehr bewegt als die auf der kontralateralen Seite. Es wurden keine signifikanten Unterschiede bezüglich des Ausmaßes der Zahnbewegung zwischen der Kontrollgruppe und der MOP sowie den kontralateralen Seiten der Versuchsgruppe festgestellt. Die Zahnbewegungen in der MOP-Gruppe, den kontralateralen Seiten der Versuchsgruppe und der Kontrollgruppe lagen jeweils bei 0,029, 0,025 und 0,028 mm/Tag. Die Schmerz-VAS-Werte waren auf der MOP-Seite im Vergleich zur kontralateralen Seite der Versuchsgruppe postinterventionell signifikant erhöht, jedoch zu keinem anderen Zeitpunkt. Zwischen den Gruppen wurden keine Unterschiede in den Parodontalwerten beobachtet.
Schlussfolgerungen
Es wurde ein 1,17-facher Zuwachs der Geschwindigkeit der Zahnbewegung in der MOP-Gruppe im Vergleich zur kontralateralen Seite festgestellt. Die beschleunigende Wirkung der MOPs war jedoch geringer als erwartet. Das mittlere Schmerzniveau war in der MOP-Gruppe statistisch höher als auf der kontralateralen Seite nur am ersten Tag der Anwendung.
This is a preview of subscription content, access via your institution.





References
Alansari S, Sangsuwon C, Vongthongleur T, Kwal R, Chneh TM, Lee YB, Nervina J, Teixeira C, Alikhani M (2015) Biological principles behind accelerated tooth movement. Semin Orthod 21(3):151–161
Alikhani M, Raptis M, Zoldan B, Sangsuwon C, Lee YB, Alyami B, Corpodian C, Barrera LM, Alansari S, Khoo E, Teixeira C (2013) Effect of micro-osteoperforations on the rate of tooth movement. Am J Orthod Dentofacial Orthop 144(5):639–648
Alkebsi A, Al-Maaitah E, Al-Shorman H, Alhaija AE (2018) Three-dimensional assessment of the effect of micro-osteoperforations on the rate of tooth movement during canine retraction in adults with Class II malocclusion: A randomized controlled clinical trial. Am J Orthod Dentofacial Orthop 153(6):771–785
Al-Naoum F, Hajeer MY, Al-Jundi A (2014) Does alveolar corticotomy accelerate orthodontic tooth movement when retracting upper canines? A split-mouth design randomized controlled trial. J Oral Maxillofac Surg 72(10):1880–1889
Andrade I Jr, Taddei SR, Garlet GP, Garlet TP, Teixeira AL, Silva TA, Teixeira MM (2009) CCR5 down-regulates osteoclast function in orthodontic tooth movement. J Dent Res 88(11):1037–1041
Arias OR, Marquez-Orozco MC (2006) Aspirin, acetaminophen, and ibuprofen: their effects on orthodontic tooth movement. Am J Orthod Dentofacial Orthop 130(3):364–370
Attri S, Mittal R, Batra P, Sonar S, Sharma K, Raghavan S, Rai KS (2018) Comparison of rate of tooth movement and pain perception during accelerated tooth movement associated with conventional fixed appliances with micro-osteoperforations—a randomised controlled trial. J Orthod 45(4):225–233
Bartzela T, Türp JC, Motschall E, Maltha JC (2009) Medication effects on the rate of orthodontic tooth movement: a systematic literature review. Am J Orthod Dentofacial Orthop 135(1):16–26
Boskey AL, Coleman R (2010) Aging and bone. J Dent Res 89(12):1333–1348
Buschang PH, Campbell PM, Ruso S (2012) Accelerating tooth movement with corticotomies: is it possible and desirable? Semin Orthod 18(4):286–294
Celebi AA, Demirer S, Catalbas B, Arikan S (2013) Effect of ovarian activity on orthodontic tooth movement and gingival crevicular fluid levels of interleukin-1β and prostaglandin E(2) in cats. Angle Orthod 83(1):70–75
Chan E, Dalci O, Petocz P, Papadopoulou AK, Darendeliler MA (2018) Physical properties of root cementum: part 26. Effects of micro-osteoperforations on orthodontic root resorption: a microcomputed tomography study. Am J Orthod Dentofacial Orthop 153(2):204–213
Cheung T, Park J, Lee D, Kim C, Olson J, Javadi S, Lawson G, McCabe J, Moon W, Ting K, Hong C (2016) Ability of mini-implant-facilitated micro-osteoperforations to accelerate tooth movement in rats. Am J Orthod Dentofacial Orthop 150(6):958–967
Cruz DR, Kohara EK, Ribeiro MS, Wetter NU (2004) Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: A preliminary study. Lasers Surg Med 35(2):117–120
Ding WH, Li W, Chen F, Zhang JF, Lv Y, Chen XY, Lin WW, Fu Z, Shi JJ (2015) Comparison of molar intrusion efficiency and bone density by CT in patients with different vertical facial morphology. J Oral Rehabil 42(5):355–362
Doig GS, Simpson F (2005) Randomization and allocation concealment: a practical guide for researchers. J Crit Care 20(2):187–193
Dudic A, Giannopoulou C, Kiliaridis S (2013) Factors related to the rate of orthodontically induced tooth movement. Am J Orthod Dentofacial Orthop 143(5):616–621
Dudic A, Giannopoulou C, Leuzinger M, Kiliaridis S (2009) Detection of apical root resorption after orthodontic treatment by using panoramic radiography and cone-beam computed tomography of super-high resolution. Am J Orthod Dentofacial Orthop 135(4):434–437
Dudic A, Giannopoulou C, Martinez M, Montet X, Kiliaridis S (2008) Diagnostic accuracy of digitized periapical radiographs validated against micro-computed tomography scanning in evaluating orthodontically induced apical root resorption. Eur J Oral Sci 116(5):467–472
Fang J, Li Y, Zhang K, Zhao Z, Mei L (2016) Escaping the adverse impacts of NSAIDs on tooth movement during orthodontics. Medicine 95(16):e3256
Feizbakhsh M, Zandian D, Heidarpour M, Farhad SZ, Fallahi HR (2018) The use of micro-osteoperforation concept for accelerating differential tooth movement. J World Fed Orthod 7(2):56–60
Fleming PS, Fedorowicz Z, Johal A, El-Angbawi A, Pandis N (2015) Surgical adjunctive procedures for accelerating orthodontic treatment. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.cd010572.pub2
Frost HM (1983) The regional acceleratory phenomenon: a review. Henry Ford Hosp Med J 31(1):3–9
Garlet TP, Coelho U, Silva JS, Garlet GP (2007) Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci 115(5):355–362
Haruyama N, Igarashi K, Saeki S, Otsuka-Isoya M, Shinoda H, Mitani H (2002) Estrous-cycle-dependent variation in orthodontic tooth movement. J Dent Res 81(6):406–410
Hassan AH, Al-Fraidi AA, Al-Saeed SH (2010) Corticotomy-assisted orthodontic treatment. Open Dent J 4:159–164
Henneman S, Von den Hoff JW, Maltha JC (2008) Mechanobiology of tooth movement. Eur J Orthod 30(3):299–306
Khalaf K (2014) Factors affecting the formation, severity and location of white spot lesions during orthodontic treatment with fixed appliances. J Oral Maxillofac Res 5(1):e4
Kouskoura T, Katsaros C, von Gunten S (2017) The potential use of pharmacological agents to modulate orthodontic tooth movement (OTM). Front Physiol 8:67
Krishnan V, Davidovitch Z (2009) On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res 88(7):597–608
Liou EJ, Pai BC, Lin JC (2004) Do miniscrews remain stationary under orthodontic forces? Am J Orthod Dentofacial Orthop 126(1):42–47
Long H, Wang Y, Jian F, Liao LN, Yang X, Lai WL (2016) Current advances in orthodontic pain. Int J Oral Sci 8(2):67–75
Nienkemper M, Handschel J, Drescher D (2014) Systematic review of mini-implant displacement under orthodontic loading. Int J Oral Sci 6(1):1–6
Okamoto A, Ohnishi T, Bandow K, Kakimoto K, Chiba N, Maeda A, Fukunaga T, Miyawaki S, Matsuguchi T (2009) Reduction of orthodontic tooth movement by experimentally induced periodontal inflammation in mice. Eur J Oral Sci 117(3):238–247
Oliveira DD, Oliveira BFD, Soares RV (2010) Alveolar corticotomies in orthodontics: Indications and effects on tooth movement. Dental Press J Orthod 15(4):144–157
Paetyangkul A, Türk T, Elekdağ-Türk S, Jones AS, Petocz P, Cheng LL, Darendeliler MA (2011) Physical properties of root cementum: Part 16. Comparisons of root resorption and resorption craters after the application of light and heavy continuous and controlled orthodontic forces for 4, 8, and 12 weeks. Am J Orthod Dentofacial Orthop 139(3):e279–e284
Paoloni V, Lione R, Farisco F, Halazonetis DJ, Franchi L, Cozza P (2017) Morphometric covariation between palatal shape and skeletal pattern in Class II growing subjects. Eur J Orthod 39(4):371–376
Pavlin D, Anthony R, Raj V, Gakunga PT (2015) Cyclic loading (vibration) accelerates tooth movement in orthodontic patients: a double-blind, randomized controlled trial. Semin Orthod 21(3):187–194
Pepicelli A, Woods M, Briggs C (2005) The mandibular muscles and their importance in orthodontics: a contemporary review. Am J Orthod Dentofacial Orthop 128(6):774–780
Pinto AS, Alves LS, Maltz M, Susin C, Zenkner JEA (2018) Does the duration of fixed orthodontic treatment affect caries activity among adolescents and young adults? Caries Res 52(6):463–467
Pinto AS, Alves LS, Zenkner JEDA, Zanatta FB, Maltz M (2017) Gingival enlargement in orthodontic patients: effect of treatment duration. Am J Orthod Dentofacial Orthop 152(4):477–482
Segal GR, Schiffman PH, Tuncay OC (2004) Meta-analysis of the treatment-related factors of external apical root resorption. Orthod Craniofac Res 7(2):71–78
Sivarajan S, Doss JG, Papageorgiou SN, Cobourne MT, Wey MC (2019) Mini-implant supported canine retraction with micro-osteoperforation: a split-mouth randomized clinical trial. Angle Orthod 89(2):183–189
Sugimori T, Yamaguchi M, Shimizu M, Kikuta J, Hikida T, Hikida M, Murakami Y, Suemitsu M, Kuyama K, Kasai K (2018) Micro-osteoperforations accelerate orthodontic tooth movement by stimulating periodontal ligament cell cycles. Am J Orthod Dentofacial Orthop 154(6):788–796
Teixeira CC, Khoo E, Tran J, Chartres I, Liu Y, Thant LM, Khabensky I, Gart LP, Cisneros G, Alikhani M (2010) Cytokine expression and accelerated tooth movement. J Dent Res 89(10):1135–1141
Tsai CY, Yang TK, Hsieh HY, Yang LY (2016) Comparison of the effects of micro-osteoperforation and corticision on the rate of orthodontic tooth movement in rats. Angle Orthod 86(4):558–564
Tsichlaki A, Chin SY, Pandis N, Fleming PS (2016) How long does treatment with fixed orthodontic appliances last? A systematic review. Am J Orthod Dentofacial Orthop 149(3):308–318
Uribe F, Padala S, Allareddy V, Nanda R (2014) Patients’, parents’, and orthodontists’ perceptions of the need for and costs of additional procedures to reduce treatment time. Am J Orthod Dentofacial Orthop 145(4 Suppl):S65–S73
Wilmes B, Drescher D, Nienkemper M (2009) A miniplate system for improved stability of skeletal anchorage. J Clin Orthod 43(8):494–501
Wilmes B, Drescher D (2008) A miniscrew system with interchangeable abutments. J Clin Orthod 42(10):574–580
Funding
This study was funded by the Near East University Scientific Research Projects Coordination Unit (SAG-2016-2-028).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
K. Gulduren, H. Tumer and U. Oz declare that they have no competing interests.
Ethical standards
All procedures performed in this study were in accordance with the ethical standards of the institutional research committee (Near East University Ethics Review Board—YDU/2017/43-358) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.
Rights and permissions
About this article
Cite this article
Gulduren, K., Tumer, H. & Oz, U. Effects of micro-osteoperforations on intraoral miniscrew anchored maxillary molar distalization. J Orofac Orthop 81, 126–141 (2020). https://doi.org/10.1007/s00056-019-00207-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00056-019-00207-4
Keywords
- Adults
- Accelerated tooth movement
- Tooth distalization
- Humans
- Treatment outcome
Schlüsselwörter
- Erwachsene
- Beschleunigte Zahnbewegung
- Zahndistalisierung
- Menschen
- Behandlungsergebnis