Skip to main content
Log in

Effects of micro-osteoperforations on intraoral miniscrew anchored maxillary molar distalization

A randomized clinical trial

Effekte von Mikroosteoperforationen auf die minischraubenunterstützte molare Distalisierung im Oberkiefer

Eine randomisierte klinische Studie

  • Randomized Clinical Trials
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Purpose

The aim was to study the effects of micro-osteoperforations (MOPs) on miniscrew-supported maxillary molar distalization.

Methods

As part of a single center, split-mouth, randomized clinical trial, 20 eligible subjects were randomly recruited from patients who had applied to the orthodontics department of a university dental hospital. In the experimental group, subjects were randomized to receive MOPs to either the left or right maxillary molar region (n = 10). The control group (n = 10) and the contralateral sides of the experimental group (n = 10) did not receive any MOPs. In both groups, distalization of the maxillary molars was performed by miniscrew-supported distalization appliances. Using 3D models, maxillary molar distalization at 3, 6, 9, and 12 weeks was measured. Pain, discomfort, eating difficulty, and speech problem levels were assessed using a visual analog scale (VAS 0–10). Periodontal evaluations were performed.

Results

In all, 18 subjects completed the study. The mean amount of tooth movement was significantly greater on the MOP side compared to contralateral side of the experimental group at all time points. After 12 weeks, the maxillary molars on the MOP side moved 1.17-fold more than those on the contralateral side. No significant differences were found regarding amount of tooth movement between the control group and the MOP and contralateral sides of the experimental group. The rates of tooth movement in the MOP sides of the experimental group, contralateral sides of the experimental group, and the control group were 0.029, 0.025, and 0.028 mm/day, respectively. Pain VAS scores after intervention were significantly increased on the MOP side compared with the contralateral side of the experimental group but not at any other time point. No differences in periodontal scores between the groups were observed.

Conclusions

A 1.17-fold increase in the rate of tooth movement in the MOP group compared with the contralateral side was recorded. However the accelerating effect of MOPs was lower than expected. The mean pain level was statistically greater in the MOP group compared to the contralateral side only on the first day of application.

Zusammenfassung

Zielsetzung

Ziel war es, die Auswirkungen von Mikroosteoperforationen (MOPs) auf die mit Minischrauben unterstützte Molarendistalisierung im Oberkiefer zu untersuchen.

Methoden

Im Rahmen einer randomisierten klinischen Split-mouth‑, Single-center-Studie wurden 20 geeignete Probanden zufällig aus den Patienten rekrutiert, die sich an der kieferorthopädischen Abteilung einer Universitätszahnklinik vorgestellt hatten. In der Versuchsgruppe erhielten die Probanden MOPs, randomisiert entweder in der linken oder der rechten oberen Molarenregion (n = 10). Die Kontrollgruppe (n = 10) und die kontralateralen Seiten der Versuchsgruppe (n = 10) erhielten keine MOPs. In beiden Gruppen wurde die Distalisierung der Oberkiefermolaren mit Hilfe von minischraubengestützten Distalisierungsgeräten durchgeführt. Anhand von 3‑D-Modellen wurde die maxilläre Molarendistalisierung nach 3, 6, 9 und 12 Wochen gemessen. Schmerz, Beschwerden, Ess- und Sprechstörungen wurden unter Verwendung einer visuellen Analogskala (VAS 0-10) erfasst. Es wurden Zahnfleischuntersuchungen durchgeführt.

Ergebnisse

Insgesamt haben 18 Probanden die Studie abgeschlossen. Der mittlere Betrag der Zahnbewegung war zu allen Zeitpunkten auf der MOP-Seite signifikant höher als auf der kontralateralen Seite der Versuchsgruppe. Nach 12 Wochen hatten sich die Oberkiefermolaren auf der MOP-Seite 1,17-mal mehr bewegt als die auf der kontralateralen Seite. Es wurden keine signifikanten Unterschiede bezüglich des Ausmaßes der Zahnbewegung zwischen der Kontrollgruppe und der MOP sowie den kontralateralen Seiten der Versuchsgruppe festgestellt. Die Zahnbewegungen in der MOP-Gruppe, den kontralateralen Seiten der Versuchsgruppe und der Kontrollgruppe lagen jeweils bei 0,029, 0,025 und 0,028 mm/Tag. Die Schmerz-VAS-Werte waren auf der MOP-Seite im Vergleich zur kontralateralen Seite der Versuchsgruppe postinterventionell signifikant erhöht, jedoch zu keinem anderen Zeitpunkt. Zwischen den Gruppen wurden keine Unterschiede in den Parodontalwerten beobachtet.

Schlussfolgerungen

Es wurde ein 1,17-facher Zuwachs der Geschwindigkeit der Zahnbewegung in der MOP-Gruppe im Vergleich zur kontralateralen Seite festgestellt. Die beschleunigende Wirkung der MOPs war jedoch geringer als erwartet. Das mittlere Schmerzniveau war in der MOP-Gruppe statistisch höher als auf der kontralateralen Seite nur am ersten Tag der Anwendung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5

Similar content being viewed by others

References

  1. Alansari S, Sangsuwon C, Vongthongleur T, Kwal R, Chneh TM, Lee YB, Nervina J, Teixeira C, Alikhani M (2015) Biological principles behind accelerated tooth movement. Semin Orthod 21(3):151–161

    Article  Google Scholar 

  2. Alikhani M, Raptis M, Zoldan B, Sangsuwon C, Lee YB, Alyami B, Corpodian C, Barrera LM, Alansari S, Khoo E, Teixeira C (2013) Effect of micro-osteoperforations on the rate of tooth movement. Am J Orthod Dentofacial Orthop 144(5):639–648

    Article  PubMed  Google Scholar 

  3. Alkebsi A, Al-Maaitah E, Al-Shorman H, Alhaija AE (2018) Three-dimensional assessment of the effect of micro-osteoperforations on the rate of tooth movement during canine retraction in adults with Class II malocclusion: A randomized controlled clinical trial. Am J Orthod Dentofacial Orthop 153(6):771–785

    Article  PubMed  Google Scholar 

  4. Al-Naoum F, Hajeer MY, Al-Jundi A (2014) Does alveolar corticotomy accelerate orthodontic tooth movement when retracting upper canines? A split-mouth design randomized controlled trial. J Oral Maxillofac Surg 72(10):1880–1889

    Article  PubMed  Google Scholar 

  5. Andrade I Jr, Taddei SR, Garlet GP, Garlet TP, Teixeira AL, Silva TA, Teixeira MM (2009) CCR5 down-regulates osteoclast function in orthodontic tooth movement. J Dent Res 88(11):1037–1041

    Article  PubMed  Google Scholar 

  6. Arias OR, Marquez-Orozco MC (2006) Aspirin, acetaminophen, and ibuprofen: their effects on orthodontic tooth movement. Am J Orthod Dentofacial Orthop 130(3):364–370

    Article  PubMed  Google Scholar 

  7. Attri S, Mittal R, Batra P, Sonar S, Sharma K, Raghavan S, Rai KS (2018) Comparison of rate of tooth movement and pain perception during accelerated tooth movement associated with conventional fixed appliances with micro-osteoperforations—a randomised controlled trial. J Orthod 45(4):225–233

    Article  PubMed  Google Scholar 

  8. Bartzela T, Türp JC, Motschall E, Maltha JC (2009) Medication effects on the rate of orthodontic tooth movement: a systematic literature review. Am J Orthod Dentofacial Orthop 135(1):16–26

    Article  PubMed  Google Scholar 

  9. Boskey AL, Coleman R (2010) Aging and bone. J Dent Res 89(12):1333–1348

    Article  PubMed  PubMed Central  Google Scholar 

  10. Buschang PH, Campbell PM, Ruso S (2012) Accelerating tooth movement with corticotomies: is it possible and desirable? Semin Orthod 18(4):286–294

    Article  Google Scholar 

  11. Celebi AA, Demirer S, Catalbas B, Arikan S (2013) Effect of ovarian activity on orthodontic tooth movement and gingival crevicular fluid levels of interleukin-1β and prostaglandin E(2) in cats. Angle Orthod 83(1):70–75

    Article  PubMed  Google Scholar 

  12. Chan E, Dalci O, Petocz P, Papadopoulou AK, Darendeliler MA (2018) Physical properties of root cementum: part 26. Effects of micro-osteoperforations on orthodontic root resorption: a microcomputed tomography study. Am J Orthod Dentofacial Orthop 153(2):204–213

    Article  PubMed  Google Scholar 

  13. Cheung T, Park J, Lee D, Kim C, Olson J, Javadi S, Lawson G, McCabe J, Moon W, Ting K, Hong C (2016) Ability of mini-implant-facilitated micro-osteoperforations to accelerate tooth movement in rats. Am J Orthod Dentofacial Orthop 150(6):958–967

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cruz DR, Kohara EK, Ribeiro MS, Wetter NU (2004) Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: A preliminary study. Lasers Surg Med 35(2):117–120

    Article  PubMed  Google Scholar 

  15. Ding WH, Li W, Chen F, Zhang JF, Lv Y, Chen XY, Lin WW, Fu Z, Shi JJ (2015) Comparison of molar intrusion efficiency and bone density by CT in patients with different vertical facial morphology. J Oral Rehabil 42(5):355–362

    Article  PubMed  Google Scholar 

  16. Doig GS, Simpson F (2005) Randomization and allocation concealment: a practical guide for researchers. J Crit Care 20(2):187–193

    Article  PubMed  Google Scholar 

  17. Dudic A, Giannopoulou C, Kiliaridis S (2013) Factors related to the rate of orthodontically induced tooth movement. Am J Orthod Dentofacial Orthop 143(5):616–621

    Article  PubMed  Google Scholar 

  18. Dudic A, Giannopoulou C, Leuzinger M, Kiliaridis S (2009) Detection of apical root resorption after orthodontic treatment by using panoramic radiography and cone-beam computed tomography of super-high resolution. Am J Orthod Dentofacial Orthop 135(4):434–437

    Article  PubMed  Google Scholar 

  19. Dudic A, Giannopoulou C, Martinez M, Montet X, Kiliaridis S (2008) Diagnostic accuracy of digitized periapical radiographs validated against micro-computed tomography scanning in evaluating orthodontically induced apical root resorption. Eur J Oral Sci 116(5):467–472

    Article  PubMed  Google Scholar 

  20. Fang J, Li Y, Zhang K, Zhao Z, Mei L (2016) Escaping the adverse impacts of NSAIDs on tooth movement during orthodontics. Medicine 95(16):e3256

    Article  PubMed  PubMed Central  Google Scholar 

  21. Feizbakhsh M, Zandian D, Heidarpour M, Farhad SZ, Fallahi HR (2018) The use of micro-osteoperforation concept for accelerating differential tooth movement. J World Fed Orthod 7(2):56–60

    Google Scholar 

  22. Fleming PS, Fedorowicz Z, Johal A, El-Angbawi A, Pandis N (2015) Surgical adjunctive procedures for accelerating orthodontic treatment. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.cd010572.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  23. Frost HM (1983) The regional acceleratory phenomenon: a review. Henry Ford Hosp Med J 31(1):3–9

    PubMed  Google Scholar 

  24. Garlet TP, Coelho U, Silva JS, Garlet GP (2007) Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci 115(5):355–362

    Article  PubMed  Google Scholar 

  25. Haruyama N, Igarashi K, Saeki S, Otsuka-Isoya M, Shinoda H, Mitani H (2002) Estrous-cycle-dependent variation in orthodontic tooth movement. J Dent Res 81(6):406–410

    Article  PubMed  Google Scholar 

  26. Hassan AH, Al-Fraidi AA, Al-Saeed SH (2010) Corticotomy-assisted orthodontic treatment. Open Dent J 4:159–164

    Article  PubMed  PubMed Central  Google Scholar 

  27. Henneman S, Von den Hoff JW, Maltha JC (2008) Mechanobiology of tooth movement. Eur J Orthod 30(3):299–306

    Article  PubMed  Google Scholar 

  28. Khalaf K (2014) Factors affecting the formation, severity and location of white spot lesions during orthodontic treatment with fixed appliances. J Oral Maxillofac Res 5(1):e4

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kouskoura T, Katsaros C, von Gunten S (2017) The potential use of pharmacological agents to modulate orthodontic tooth movement (OTM). Front Physiol 8:67

    Article  PubMed  PubMed Central  Google Scholar 

  30. Krishnan V, Davidovitch Z (2009) On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res 88(7):597–608

    Article  PubMed  Google Scholar 

  31. Liou EJ, Pai BC, Lin JC (2004) Do miniscrews remain stationary under orthodontic forces? Am J Orthod Dentofacial Orthop 126(1):42–47

    Article  PubMed  Google Scholar 

  32. Long H, Wang Y, Jian F, Liao LN, Yang X, Lai WL (2016) Current advances in orthodontic pain. Int J Oral Sci 8(2):67–75

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nienkemper M, Handschel J, Drescher D (2014) Systematic review of mini-implant displacement under orthodontic loading. Int J Oral Sci 6(1):1–6

    Article  PubMed  Google Scholar 

  34. Okamoto A, Ohnishi T, Bandow K, Kakimoto K, Chiba N, Maeda A, Fukunaga T, Miyawaki S, Matsuguchi T (2009) Reduction of orthodontic tooth movement by experimentally induced periodontal inflammation in mice. Eur J Oral Sci 117(3):238–247

    Article  PubMed  Google Scholar 

  35. Oliveira DD, Oliveira BFD, Soares RV (2010) Alveolar corticotomies in orthodontics: Indications and effects on tooth movement. Dental Press J Orthod 15(4):144–157

    Article  Google Scholar 

  36. Paetyangkul A, Türk T, Elekdağ-Türk S, Jones AS, Petocz P, Cheng LL, Darendeliler MA (2011) Physical properties of root cementum: Part 16. Comparisons of root resorption and resorption craters after the application of light and heavy continuous and controlled orthodontic forces for 4, 8, and 12 weeks. Am J Orthod Dentofacial Orthop 139(3):e279–e284

    Article  PubMed  Google Scholar 

  37. Paoloni V, Lione R, Farisco F, Halazonetis DJ, Franchi L, Cozza P (2017) Morphometric covariation between palatal shape and skeletal pattern in Class II growing subjects. Eur J Orthod 39(4):371–376

    Article  PubMed  Google Scholar 

  38. Pavlin D, Anthony R, Raj V, Gakunga PT (2015) Cyclic loading (vibration) accelerates tooth movement in orthodontic patients: a double-blind, randomized controlled trial. Semin Orthod 21(3):187–194

    Article  Google Scholar 

  39. Pepicelli A, Woods M, Briggs C (2005) The mandibular muscles and their importance in orthodontics: a contemporary review. Am J Orthod Dentofacial Orthop 128(6):774–780

    Article  PubMed  Google Scholar 

  40. Pinto AS, Alves LS, Maltz M, Susin C, Zenkner JEA (2018) Does the duration of fixed orthodontic treatment affect caries activity among adolescents and young adults? Caries Res 52(6):463–467

    Article  PubMed  Google Scholar 

  41. Pinto AS, Alves LS, Zenkner JEDA, Zanatta FB, Maltz M (2017) Gingival enlargement in orthodontic patients: effect of treatment duration. Am J Orthod Dentofacial Orthop 152(4):477–482

    Article  PubMed  Google Scholar 

  42. Segal GR, Schiffman PH, Tuncay OC (2004) Meta-analysis of the treatment-related factors of external apical root resorption. Orthod Craniofac Res 7(2):71–78

    Article  PubMed  Google Scholar 

  43. Sivarajan S, Doss JG, Papageorgiou SN, Cobourne MT, Wey MC (2019) Mini-implant supported canine retraction with micro-osteoperforation: a split-mouth randomized clinical trial. Angle Orthod 89(2):183–189

    Article  PubMed  Google Scholar 

  44. Sugimori T, Yamaguchi M, Shimizu M, Kikuta J, Hikida T, Hikida M, Murakami Y, Suemitsu M, Kuyama K, Kasai K (2018) Micro-osteoperforations accelerate orthodontic tooth movement by stimulating periodontal ligament cell cycles. Am J Orthod Dentofacial Orthop 154(6):788–796

    Article  PubMed  Google Scholar 

  45. Teixeira CC, Khoo E, Tran J, Chartres I, Liu Y, Thant LM, Khabensky I, Gart LP, Cisneros G, Alikhani M (2010) Cytokine expression and accelerated tooth movement. J Dent Res 89(10):1135–1141

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tsai CY, Yang TK, Hsieh HY, Yang LY (2016) Comparison of the effects of micro-osteoperforation and corticision on the rate of orthodontic tooth movement in rats. Angle Orthod 86(4):558–564

    Article  PubMed  Google Scholar 

  47. Tsichlaki A, Chin SY, Pandis N, Fleming PS (2016) How long does treatment with fixed orthodontic appliances last? A systematic review. Am J Orthod Dentofacial Orthop 149(3):308–318

    Article  PubMed  Google Scholar 

  48. Uribe F, Padala S, Allareddy V, Nanda R (2014) Patients’, parents’, and orthodontists’ perceptions of the need for and costs of additional procedures to reduce treatment time. Am J Orthod Dentofacial Orthop 145(4 Suppl):S65–S73

    Article  PubMed  Google Scholar 

  49. Wilmes B, Drescher D, Nienkemper M (2009) A miniplate system for improved stability of skeletal anchorage. J Clin Orthod 43(8):494–501

    PubMed  Google Scholar 

  50. Wilmes B, Drescher D (2008) A miniscrew system with interchangeable abutments. J Clin Orthod 42(10):574–580

    PubMed  Google Scholar 

Download references

Funding

This study was funded by the Near East University Scientific Research Projects Coordination Unit (SAG-2016-2-028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal Gulduren DDS.

Ethics declarations

Conflict of interest

K. Gulduren, H. Tumer and U. Oz declare that they have no competing interests.

Ethical standards

All procedures performed in this study were in accordance with the ethical standards of the institutional research committee (Near East University Ethics Review Board—YDU/2017/43-358) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulduren, K., Tumer, H. & Oz, U. Effects of micro-osteoperforations on intraoral miniscrew anchored maxillary molar distalization. J Orofac Orthop 81, 126–141 (2020). https://doi.org/10.1007/s00056-019-00207-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-019-00207-4

Keywords

Schlüsselwörter

Navigation