Skip to main content

Regulation of the autophagy-marker Sequestosome 1 in periodontal cells and tissues by biomechanical loading

Regulation des Autophagie-Markers Sequestosom 1 durch biomechanische Kräfte in parodontalen Zellen und Geweben



Orthodontic treatment is based on the principle of force application to teeth and subsequently to the surrounding tissues and periodontal cells. Sequestosome 1 (SQSTM1) is a well-known marker for autophagy, which is an important cellular mechanism of adaptation to stress. The aim of this study was to analyze whether biomechanical loading conditions regulate SQSTM1 in periodontal cells and tissues, thereby providing further information on the role of autophagy in orthodontic tooth movement.


Periodontal ligament (PDL) fibroblasts were exposed to cyclic tensile strain of low magnitude (3%, CTSL), and the regulation of autophagy-associated targets was determined with an array-based approach. SQSTM1 was selected for further biomechanical loading experiments with dynamic and static tensile strain and assessed via real-time polymerase chain reaction (RT-PCR) and immunoblotting. Signaling pathways involved in SQSTM1 activation were analyzed by using specific inhibitors, including an autophagy inhibitor. Finally, SQSTM1 expression was analyzed in gingival biopsies and histological sections of rats in presence and absence of orthodontic forces.


Multiple autophagy-associated targets were regulated by CTSL in PDL fibroblasts. All biomechanical loading conditions tested increased the SQSTM1 expression significantly. Stimulatory effects of CTSL on SQSTM1 expression were diminished by inhibition of the c‑Jun N‑terminal kinase (JNK) pathway and of autophagy. Increased SQSTM1 levels after CTSL were confirmed by immunoblotting. Orthodontic force application also led to significantly elevated SQTSM1 levels in the gingiva and PDL of treated animals as compared to control.


Our in vitro and in vivo findings provide evidence of a role of SQSTM1 and thereby autophagy in orthodontic tooth movement.



Der kieferorthopädischen Zahnbewegung liegt das Prinzip einer Kraftapplikation auf Zähne und somit auf umgebende parodontale Zellen und Gewebe zugrunde. Sequestosom 1 (SQSTM1) gilt als Marker des wichtigen zellulären Adaptationsmechanismus Autophagie. Ziel dieser Studie war es, die Regulation von SQSTM1 bei der Adaptation an biomechanische Belastung in parodontalen Zellen und Geweben zu untersuchen und damit die Rolle der Autophagie bei der kieferorthopädischen Zahnbewegung zu eruieren.


Parodontale Ligament(PDL)-Zellen wurden einer dynamischen Belastung mit geringen Kräften (3 %, „cyclic tensile strain of low magnitude“, CTSL) ausgesetzt und die Regulation von autophagieassoziierten Zielgenen wurde mittels Arrays bestimmt. SQSTM1 wurde als Zielgen für weitere Untersuchungen ausgewählt. Die Regulation wurde nach Applikation dynamischer und statischer Belastungen durch „real-time polymerase chain reaction“ (RT-PCR) und Immunoblotting untersucht. Die an der Regulation beteiligten Signalwege wurden mittels spezifischer Inhibition, einschließlich eines Autophagie-Hemmers, analysiert. Weiterhin wurde die SQSTM1-Expression in gingivalen Biopsien und in histologischen Schnitten von Ratten nach kieferorthopädisch Zahnbewegung ermittelt und mit entsprechenden Kontrollen verglichen.


Eine Vielzahl an Genen wurde durch die Applikation von CTSL in PDL-Zellen reguliert. Alle getesteten biomechanischen Belastungszustände steigerten die SQSTM1-Genexpression signifikant. Die CTSL-induzierte Steigerung der SQSTM1-Genexpression konnte sowohl durch eine Hemmung des „c‑Jun N‑terminal kinase“(JNK)-Signalwegs als auch der Autophagie inhibiert werden. Auf Proteinebene konnte ebenfalls eine Zunahme von SQSTM1 durch CTSL nachgewiesen werden. Durch Applikation kieferorthopädischer Kräfte führten sowohl zu einer erhöhten SQSTM1-Genexpression in der Gingiva als auch im PDL der behandelten Tiere.


Die Ergebnisse unserer Studie legen nahe, dass SQSTM1 und damit die Autophagie eine zentrale Rolle bei der kieferorthopädischen Zahnbewegung spielen.

This is a preview of subscription content, access via your institution.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4


  1. 1.

    de Araujo RM, Oba Y, Kuroda S, Tanaka E, Moriyama K (2014) RhoE regulates actincytoskeleton organization in human periodontal ligament cells under mechanical stress. Arch Oral Biol 59:187–192

    PubMed  Google Scholar 

  2. 2.

    He Y, Macarak EJ, Korostoff JM, Howard PS (2004) Compression and tension: differential effects on matrix accumulation by periodontal ligament fibroblasts in vitro. Connect Tissue Res 45:28–39

    PubMed  Google Scholar 

  3. 3.

    Middleton J, Jones M, Wilson A (1996) The role of the periodontal ligament in bone modeling: the initial development of a time-dependent finite element model. Am J Orthod Dentofacial Orthop 109:155–162

    PubMed  Google Scholar 

  4. 4.

    King JS (2012) Mechanical stress meets autophagy: potential implications for physiology and pathology. Trends Mol Med 18:583–588

    PubMed  Google Scholar 

  5. 5.

    Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81–94

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Google Scholar 

  7. 7.

    Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1–32

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Salabei JK, Hill BG (2015) Autophagic regulation of smooth muscle cell biology. Redox Biol 4:97–103

    PubMed  Google Scholar 

  9. 9.

    Lapaquette P, Guzzo J, Bretillon L, Bringer MA (2015) Cellular and molecular connections between autophagy and inflammation. Mediators Inflamm.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Shah P, Trinh E, Qiang L, Xie L, Hu WY, Prins GS, Pi J, He YY (2017) Arsenic induces p62 expression to form a positive feedback loop with Nrf2 in human epidermal keratinocytes: implications for preventing arsenic-induced skin cancer. Molecules.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Zhuang H, Hu D, Singer D, Walker JV, Nisr RB, Tieu K, Ali K, Tredwin C, Luo S, Ardu S, Hu B (2015) Local anesthetics induce autophagy in young permanent tooth pulp cells. Cell Death Discov 1:15024

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Pietrocola F, Izzo V, Niso-Santano M, Vacchelli E, Galluzzi L, Maiuri MC, Kroemer G (2013) Regulation of autophagy by stress-responsive transcription factors. Semin Cancer Biol 23:310–322

    PubMed  Google Scholar 

  13. 13.

    Nakamura Y, Hirashita A, Kuwabara Y (1984) The localization of acid phosphatase activity in osteoblasts incident to experimental tooth movement. Acta Histochem Cytochem 17:581–582

    Google Scholar 

  14. 14.

    Zhao Z, Fan Y, Bai D, Wang J, Li Y (2008) The adaptive response of periodontal ligament to orthodontic force loading—a combined biomechanical and biological study. Clin Biomech (Bristol, Avon) 23(Suppl 1):S59–S66

    Google Scholar 

  15. 15.

    Chen H, Chen L, Cheng B, Jiang C (2015) Cyclic mechanical stretching induces autophagic cell death in tenofibroblasts through activation of prostaglandin E2 production. Cell Physiol Biochem 36:24–33

    PubMed  Google Scholar 

  16. 16.

    Basdra EK, Komposch G (1997) Osteoblast-like properties of human periodontal ligament cells: an in vitro analysis. Eur J Orthod 19:615–621

    PubMed  Google Scholar 

  17. 17.

    Mariotti A, Cochran DL (1990) Characterization of fibroblasts derived from human periodontal ligament and gingiva. J Periodontol 61:103–111

    PubMed  Google Scholar 

  18. 18.

    Deschner B, Rath B, Jäger A, Deschner J, Denecke B, Memmert S, Götz W (2012) Gene analysis of signal transduction factors and transcription factors in periodontal ligament cells following application of dynamic strain. J Orofac Orthop 73(6):486–497

    PubMed  Google Scholar 

  19. 19.

    Nogueira AV, Nokhbehsaim M, Eick S, Bourauel C, Jäger A, Jepsen S, Cirelli JA, Deschner J (2014) Regulation of visfatin by microbial and biomechanical signals in PDL cells. Clin Oral Investig 18:171–178

    PubMed  Google Scholar 

  20. 20.

    Nogueira AV, Nokhbehsaim M, Eick S, Bourauel C, Jäger A, Jepsen S, Rossa C Jr, Deschner J, Cirelli JA (2014) Biomechanical loading modulates proinflammatory and bone resorptive mediators in bacterial-stimulated PDL cells. Mediators Inflamm.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Nokhbehsaim M, Deschner B, Winter J, Bourauel C, Rath B, Jäger A, Jepsen S, Deschner J (2011) Interactions of regenerative, inflammatory and biomechanical signals on bone morphogenetic protein‑2 in periodontal ligament cells. J Periodontal Res 46:374–381

    PubMed  Google Scholar 

  22. 22.

    Nokhbehsaim M, Deschner B, Winter J, Bourauel C, Rath B, Jäger A, Jepsen S, Deschner J (2011) Interactions of regenerative, inflammatory and biomechanical signals on bone morphogenetic protein‑2 in periodontal ligament cells. J Periodontal Res 46:374–381

    PubMed  Google Scholar 

  23. 23.

    Rath-Deschner B, Deschner J, Reimann S, Jager A, Gotz W (2009) Regulatory effects of biomechanical strain on the insulin-like growth factor system in human periodontal cells. J Biomech 42:2584–2589

    PubMed  Google Scholar 

  24. 24.

    Natali AN, Pavan PG, Scarpa C (2004) Numerical analysis of tooth mobility: formulation of a non-linear constitutive law for the periodontal ligament. Dent Mater 20:623–629

    PubMed  Google Scholar 

  25. 25.

    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Nogueira AVB, de Molon RS, Nokhbehsaim M, Deschner J, Cirelli JA (2017) Contribution of biomechanical forces to inflammation-induced bone resorption. J Clin Periodontol 44:31–41

    PubMed  Google Scholar 

  27. 27.

    De Stefano D, Villella VR, Esposito S, Tosco A, Sepe A, De Gregorio F, Salvadori L, Grassia R, Leone CA, De Rosa G, Maiuri MC, Pettoello-Mantovani M, Guido S, Bossi A, Zolin A, Venerando A, Pinna LA, Mehta A, Bona G, Kroemer G, Maiuri L, Raia V (2014) Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation. Autophagy 10:2053–2074

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Rea SL, Majcher V, Searle MS, Layfield R (2014) SQSTM1 mutations—bridging Paget disease of bone and ALS/FTLD. Exp Cell Res 325:27–37

    PubMed  Google Scholar 

  29. 29.

    Sánchez-Martín P, Saito T, Komatsu M (2019) p62/SQSTM1: ‘Jack of all trades’ in health and cancer. FEBS J 286:8–23

    PubMed  Google Scholar 

  30. 30.

    Tan YQ, Zhang J, Du GF, Lu R, Chen GY, Zhou G (2016) Altered autophagy-associated genes expression in T cells of oral lichen planus correlated with clinical features. Mediators Inflamm.

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Sumitomo A, Yukitake H, Hirai K, Horike K, Ueta K, Chung Y, Warabi E, Yanagawa T, Kitaoka S, Furuyashiki T, Narumiya S, Hirano T, Niwa M, Sibille E, Hikida T, Sakurai T, Ishizuka K, Sawa A, Tomoda T (2018) Ulk2 controls cortical excitatory-inhibitory balance via autophagic regulation of p62 and GABAA receptor trafficking in pyramidal neurons. Hum Mol Genet 27:3165–3176

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Strappazzon F, Nazio F, Corrado M, Cianfanelli V, Romagnoli A, Fimia GM, Campello S, Nardacci R, Piacentini M, Campanella M, Cecconi F (2015) AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1. Cell Death Differ 22:419–432

    PubMed  Google Scholar 

  33. 33.

    Nakashima H, Nguyen T, Goins WF, Chiocca EA (2015) Interferon-stimulated gene 15 (ISG15) and ISG15-linked proteins can associate with members of the selective autophagic process, histone deacetylase 6 (HDAC6) and SQSTM1/p62. J Biol Chem 290:1485–1495

    PubMed  Google Scholar 

  34. 34.

    Yan J, Seibenhener ML, Calderilla-Barbosa L, Diaz-Meco MT, Moscat J, Jiang J, Wooten MW, Wooten MC (2013) SQSTM1/p62 interacts with HDAC6 and regulates deacetylase activity. PLoS One 8:e76016

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Schmeisser H, Fey SB, Horowitz J, Fischer ER, Balinsky CA, Miyake K, Bekisz J, Snow AL, Zoon KC (2013) Type I interferons induce autophagy in certain human cancer cell lines. Autophagy 9:683–696

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Xu HG, Yu YF, Zheng Q, Zhang W, Wang CD, Zhao XY, Tong WX, Wang H, Liu P, Zhang XL (2014) Autophagy protects end plate chondrocytes from intermittent cyclic mechanical tension induced calcification. Bone 66:232–239

    PubMed  Google Scholar 

  37. 37.

    Ma Y, Galluzzi L, Zitvogel L, Kroemer G (2013) Autophagy and cellular immune responses. Immunity 39:211–227

    PubMed  Google Scholar 

  38. 38.

    Taniguchi K, Yamachika S, He F, Karin M (2016) p62/SQSTM1 - Dr. Jekyll and Mr. Hyde that prevents oxidative stress but promotes liver cancer. FEBS Lett 590:2375–2397

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Warabi E, Takabe W, Minami T, Inoue K, Itoh K, Yamamoto M, Ishii T, Kodama T, Noguchi N (2007) Shear stress stabilizes NF-E2-related factor 2 and induces antioxidant genes in endothelial cells: role of reactive oxygen/nitrogen species. Free Radic Biol Med 42:260–269

    PubMed  Google Scholar 

  40. 40.

    Vegliante R, Desideri E, Di Leo L, Ciriolo MR (2016) Dehydroepiandrosterone triggers autophagic cell death in human hepatoma cell line HepG2 via JNK-mediated p62/SQSTM1 expression. Carcinogenesis 37:233–244

    PubMed  Google Scholar 

  41. 41.

    King JS, Veltman DM, Insall RH (2011) The induction of autophagy by mechanical stress. Autophagy 7:1490–1499

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Tanabe F, Yone K, Kawabata N, Sakakima H, Matsuda F, Ishidou Y, Maeda S, Abematsu M, Komiya S, Setoguchi T (2011) Accumulation of p62 in degenerated spinal cord under chronic mechanical compression: functional analysis of p62 and autophagy in hypoxic neuronal cells. Autophagy 7:1462–1471

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Chen Z, Fu Q, Shen B, Huang X, Wang K, He P, Li F, Zhang F, Shen H (2014) Enhanced p62 expression triggers concomitant autophagy and apoptosis in a rat chronic spinal cord compression model. Mol Med Rep 9:2091–2096

    PubMed  Google Scholar 

  44. 44.

    Retrouvey J, Geramy A (2015) Orthodontic force and tooth movement with and without occlusal loads: 3D analysis using finite element method. Iran J Orthod 10:e4985

    Google Scholar 

  45. 45.

    Isola G, Matarese G, Cordasco G, Perillo L, Ramaglia L (2016) Mechanobiology of the tooth movement during the orthodontic treatment: a literature review. Minerva Stomatol 65:299–327

    PubMed  Google Scholar 

Download references


The authors would like to thank Ms. Ramona Menden, Ms. Silke van Dyck, Ms. Inka Bay and Ms. Jana Marciniak for their valuable support. This study was supported by the Medical Faculty of the University of Bonn, the German Research Foundation (DFG; ME 4798/1‑1, ME 4798/1-2) and the German Orthodontic Society (DGKFO).


This study was supported by the Medical Faculty of the University of Bonn, the German Orthodontic Society (DGKFO) and the German Research Foundation (DFG, ME 4798/1–1, ME 4798/1–2).

Author information



Corresponding author

Correspondence to S. Memmert.

Ethics declarations

Conflict of interest

S. Memmert, A.V.B. Nogueira, A. Damanaki, M. Nokhbehsaim, B. Rath-Deschner, W. Götz, L. Gölz, J.A. Cirelli, A. Till, A. Jäger and J. Deschner declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Ethics Committee of the University of Bonn (#117/15) and with the 1964 Helsinki declaration and its later amendments. All procedures of animal experiments were performed in accordance with the ethical standards of the Ethical Committee on Animal Experimentation (protocol number: 23/2012) from the School of Dentistry at Araraquara, University Estadual Paulista – UNESP and in accordance with the recommendations of the ARRIVE guidelines. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Memmert, S., Nogueira, A.V.B., Damanaki, A. et al. Regulation of the autophagy-marker Sequestosome 1 in periodontal cells and tissues by biomechanical loading. J Orofac Orthop 81, 10–21 (2020).

Download citation


  • Sequestosome 1
  • Autophagy
  • Periodontal ligament
  • Mechanical stress
  • Orthodontic tooth movement


  • Sequestosom 1
  • Autophagie
  • Desmodont
  • Mechanische Belastung
  • Kieferorthopädische Zahnbewegung