Root resorption due to orthodontic treatment using self-ligating and conventional brackets

A cone-beam computed tomography study
Original Article
  • 13 Downloads

Abstract

Objectives

Purpose of the present study was to compare external root resorption (ERR) volumetrically in maxillary incisors induced by orthodontic treatment using self-ligating brackets (Damon Q, DQ) or conventional brackets (Titanium Orthos, TO) with the help of cone-beam computed tomography (CBCT).

Patients and methods

A sample of 32 subjects, with Angle Class I malocclusion and anterior crowding of 4–10 mm, was divided randomly into two groups: a DQ group, in which self-ligating DQ brackets with Damon archwires were used; and a TO group, in which conventional TO brackets with large Orthos archwires were applied. The study was conducted using CBCT scans taken before (T1), and near the end (9 months after the initiation of treatment; T2) of the orthodontic treatment. The extent of ERR was determined volumetrically using Mimics software. Changes in root volume were evaluated by repeated-measures analysis of variance as well as by paired and independent t-tests.

Results

While significant differences were found between T1 and T2 for root volume in both groups (p < 0.05), there was no difference between the groups regarding the amount (mm3 or relative change) of ERR (p > 0.05). Maxillary central and lateral incisors showed similar volume loss (p > 0.05). Furthermore, the TO group showed a higher prevalence of palatinal and proximal slanted RR compared with the DQ group (p < 0.05).

Conclusions

It is not possible to suggest superiority of one bracket system over the other only considering root resorption pattern or amount. Higher incidence of slanted RR found in patients treated with the TO system warrants further research to identify possible specific causes.

Keywords

Root resorption Root volume Cone-beam computed tomography (CBCT) Self-ligating brackets Conventional brackets 

Wurzelresorptionen bei kieferorthopädischer Behandlung mit selbstligierenden und konventionellen Brackets

Eine Digitale-Volumentomographie-Studie

Zusammenfassung

Ziel

Ziel der vorliegenden Studie war es, das Ausmaß externer Wurzelresorptionen (ERR) an Oberkieferinzisivi mittels digitaler Volumentomographie zu vergleichen. Zwei Systeme kamen zur Anwendung: selbstligierende Brackets (Damon Q, DQ) und konventionelle Brackets (Titanium Orthos, TO).

Patienten und Methoden

Insgesamt 32 Patienten mit Klasse-I-Malokklusion und frontalem Engstand zwischen 4 und 10 mm wurden in zwei Gruppen aufgeteilt: DQ-Gruppe (Behandlung mit selbstligierenden DQ-Brackets und Damon-Bögen) und TO-Gruppe (konventionelle TO-Brackets mit Orthos-Bögen, large). DVT-Aufnahmen wurden vor Beginn (T1) und kurz vor Abschluss der kieferorthopädischen Behandlung (T2; 9 Monate nach Behandlungsbeginn) erstellt. Das Ausmaß der ERR wurde volumetrisch mithilfe der Software Mimics bestimmt, Veränderungen im Zahnwurzelvolumen wurden durch eine Varianzanalyse wiederholter Messungen sowie durch gepaarte und unabhängige t-Tests evaluiert.

Ergebnisse

Während sich in beiden Gruppen signifikante Volumenunterschiede im Intervall T1–T2 nachweisen ließen (p < 0,05), bestand kein Unterschied zwischen den Gruppen hinsichtlich des Ausmaßes (mm3 oder relative Änderung) der ERR (p > 0,05). Die zentralen und lateralen Schneidezähne im Oberkiefer wiesen einen ähnlichen Volumenverlust auf (p > 0,05). Darüber hinaus zeigten sich in der in der TO-Gruppe mehr laterale Wurzelresorptionen (SRR, „slanted root resorption“) als in der DQ-Gruppe (p < 0,05).

Schlussfolgerungen

Im Hinblick auf das Wurzelresorptionsvolumen konnte keine Überlegenheit von einem der beiden Bracketsysteme festgestellt werden. Die höhere SRR-Inzidenz bei mit dem TO-System behandelten Patienten erfordert weitere Studien zur Abklärung möglicher spezifischer Ursachen.

Schlüsselwörter

Wurzelresorption Zahnwurzelvolumen Digitale Volumentomographie (DVT) Selbstligierende Brackets Konventionelle Brackets 

Notes

Acknowledgements

We would like to thank 4C Medikal for providing us the opportunity to use Mimics software in evaluation of our data.

Conflict of interest

I. Aras, I. Unal, G. Huniler and A. Aras declare that they have no competing interests.

References

  1. 1.
    Apajalahti S, Peltola JS (2007) Apical root resorption after orthodontic treatment—a retrospective study. Eur J Orthod 29:408–412CrossRefPubMedGoogle Scholar
  2. 2.
    Archambault A, Lacoursiere R, Badawi HM, Major PW, Carey J, Flores-Mir C (2010) Torque expression in stainless steel orthodontic brackets. Angle Orthod 80:201–210CrossRefPubMedGoogle Scholar
  3. 3.
    Badawi HM, Toogood RW, Carey JPR, Heo G, Major PW (2008) Torque expression of self-ligating brackets. Am J Orthod Dentofacial Orthop 133:721–728CrossRefPubMedGoogle Scholar
  4. 4.
    Bartley N, Turk T, Colak C, Elekdağ-Türk S, Jones A, Petocz P et al (2011) Physical properties of root cementum: part 17. Root resorption after the application of 2.5o and 15o of buccal root torque for 4 weeks: a microcomputed tomography study. Am J Orthod Dentofacial Orthop 139:e353–e360CrossRefPubMedGoogle Scholar
  5. 5.
    Blake M, Woodside DG, Pharoah MJ (1995) A radiographic comparison of apical root resorption after orthodontic treatment with the edgewise and speed appliances. Am J Orthod Dentofacial Orthop 108:76–84CrossRefPubMedGoogle Scholar
  6. 6.
    Brezniak N, Goren S, Zoizner R, Dinbar A, Arad A, Wasserstein A, Heller M (2004) A comparison of three methods to accurately measure root length. Angle Orthod 74:786–791PubMedGoogle Scholar
  7. 7.
    Brezniak N, Wasserstein A (1993) Root resorption after orthodontic treatment: part 1. Literature review. Am J Orthod Dentofacial Orthop 103:62–66CrossRefPubMedGoogle Scholar
  8. 8.
    Chan E, Darendeliler MA (2005) Physical properties of root cementum: Part 5. Volumetric analysis of root resorption craters after application of light and heavy orthodontic forces. Am J Orthod Dentofacial Orthop 127:186–195CrossRefPubMedGoogle Scholar
  9. 9.
    Dalstra M, Eriksen H, Bergamini C, Melsen B (2015) Actual versus theoretical torsional play in conventional and self-ligating bracket systems. J Orthod 42:103–113CrossRefPubMedGoogle Scholar
  10. 10.
    Dudic A, Giannopoulou C, Leuzinger M, Kiliaridis S (2009) Detection of apical root resorption after orthodontic treatment by using panoramic radiography and cone-beam computed tomography of super-high resolution. Am J Orthod Dentofacial Orthop 135:434–437CrossRefPubMedGoogle Scholar
  11. 11.
    Durack C, Patel S, Davies J, Wilson R, Mannocci F (2011) Diagnostic accuracy of small volume cone beam computed tomography and intraoral periapical radiography for the detection of simulated external inflammatory root resorption. Int Endod J 44:136–147CrossRefPubMedGoogle Scholar
  12. 12.
    Fleming PS, Lee RT, Marinho V, Johal A (2013) Comparison of maxillary arch dimensional changes with passive and active self-ligating and conventional brackets in the permanent dentition: a multicenter, randomized controlled trial. Am J Orthod Dentofacial Orthop 144:185–193CrossRefPubMedGoogle Scholar
  13. 13.
    Huang Y, Keilig L, Rahimi A, Reimann S, Bourauel C (2012) Torque capabilities of self-ligating and conventional brackets under the effect of bracket width and free wire length. Orthod Craniofac Res 15:255–262CrossRefPubMedGoogle Scholar
  14. 14.
    Jacobs C, Gebhardt PF, Jacobs V, Hechtner M, Meila D, Wehrbein H (2014) Root resorption, treatment time and extraction rate during orthodontic treatment with self-ligating and conventional brackets. Head Face Med 10:2CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Katona TR (2006) Flaws in root resorption assessment algorithms: role of tooth shape. Am J Orthod Dentofacial Orthop 130(698):e19–e27Google Scholar
  16. 16.
    Katsikogianni EN, Reimann S, Weber A, Karp J, Bourauel C (2015) A comparative experimental investigation of torque capabilities induced by conventional and active, passive self-ligating brackets. Eur J Orthod 37:440–446CrossRefPubMedGoogle Scholar
  17. 17.
    King AD, Turk T, Colak C, Elekdağ-Türk S, Jones A, Petocz P et al (2011) Physical properties of root cementum: part 21. Extent of root resorption after the application of 2.5o and 15o tips for 4 weeks: a microcomputed tomography study. Am J Orthod Dentofacial Orthop 140:e299–e305CrossRefPubMedGoogle Scholar
  18. 18.
    Leite V, Conti AC, Navarro R, Almeida M, Oltramari-Navarro P, Almeida R (2012) Comparison of root resorption between self-ligating and conventional preadjusted brackets using cone beam computed tomography. Angle Orthod 82:1078–1082CrossRefPubMedGoogle Scholar
  19. 19.
    Linge L, Linge BO (1991) Patient characteristics and treatment variables associated with apical root resorption during orthodontic treatment. Am J Orthod Dentofacial Orthop 99:35–43CrossRefPubMedGoogle Scholar
  20. 20.
    Lund H, Gröndahl K, Hansen K, Gröndahl HG (2012) Apical root resorption during orthodontic treatment. A prospective study using cone beam CT. Angle Orthod 82:480–487CrossRefPubMedGoogle Scholar
  21. 21.
    Maret D, Molinier F, Braga J et al (2010) Accuracy of 3D reconstructions based on cone beam computer tomography. J Dent Res 89:1465–1469CrossRefPubMedGoogle Scholar
  22. 22.
    McFadden WM, Engstrom C, Engstrom H, Anholm JM (1989) A study of the relationship incisor intrusion and root shortening. Am J Orthod Dentofacial Orthop 96:390–396CrossRefPubMedGoogle Scholar
  23. 23.
    Melenka GW, Lacoursiere RA, Carey JP, Nobes DS, Heo G, Major PW (2014) Comparison of deformation and torque expression of the orthos and orthos Ti bracket systems. Eur J Orthod 36:381–388CrossRefPubMedGoogle Scholar
  24. 24.
    Pandis N, Nasika M, Polychronopoulou A, Eliades T (2008) External apical root resorption in patients treated with conventional and self-ligating brackets. Am J Orthod Dentofacial Orthop 134:646–651CrossRefPubMedGoogle Scholar
  25. 25.
    Patel S, Dawood A, Wilson R, Horner K, Mannocci F (2009) The detection and management of root resorption lesions using intraoral radiography and cone beam computed tomography—an in vivo investigation. Int Endod J 42:831–838CrossRefPubMedGoogle Scholar
  26. 26.
    Roscoe MG, Meira JBC, Cattaneo PM (2015) Association of orthodontic force system and root resorption: a systematic review. Am J Orthod Dentofacial Orthop 147:610–626CrossRefPubMedGoogle Scholar
  27. 27.
    Scott P, DiBiase AT, Sherriff M, Cobourne MT (2008) Alignment efficiency of Damon3 self-ligating and conventional orthodontic bracket systems: a randomized clinical trial. Am J Orthod Dentofacial Orthop 134(470):e471–e478Google Scholar
  28. 28.
    Wang Y, He S, Yu L, Li J, Chen S (2011) Accuracy of volumetric measurement of teeth in vivo based on cone beam computer tomography. Orthod Craniofac Res 14:206–212CrossRefPubMedGoogle Scholar
  29. 29.
    Weltman B, Vig KW, Fields HW, Shanker S, Kaizar EE (2010) Root resorption associated with orthodontic tooth movement: a systematic review. Am J Orthod Dentofacial Orthop 137:462–476CrossRefPubMedGoogle Scholar
  30. 30.
    Wu ATJ, Turk T, Colak C, Elekdağ-Türk S, Jones A, Petocz P et al (2011) Physical properties of root cementum: part 18. Extent of root resorption after the application of light and heavy controlled rotational orthodontic forces for 4 weeks: a microcomputed tomography study. Am J Orthod Dentofacial Orthop 139:e495–503CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Isil Aras
    • 1
  • Idil Unal
    • 2
  • Gencer Huniler
    • 3
  • Aynur Aras
    • 3
  1. 1.School of OrthodonticsJacksonville UniversityJacksonvilleUSA
  2. 2.Dentege ADSMAlsancakTurkey
  3. 3.Department of Orthodontics, Faculty of DentistryEge UniversityBornovaTurkey

Personalised recommendations