Skip to main content
Log in

Coordinating bracket torque and incisor inclination

Part 2: Reproducibility and statistical measures of the torque coordination angle (TCA)

Koordination von Brackettorque und Schneidezahninklination

Teil 2: Reproduzierbarkeit und statistische Kennwerte des TCA („torque coordination angle“)

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Purpose

To determine the reproducibility and statistical measures of the torque coordination angle (TCA).

Methods

A total of 107 final cephalograms and corresponding casts were included, all reflecting treatment outcomes that met high qualitative standards, one of them being a Peer Assessment Rating (PAR) score of ≤3. Based on these records, the TCA was measured as a parameter to identify differences related to tooth morphology and bracket position between the torque-relevant reference plane at the bracket base and the long axis of a tooth. All measurements were performed on upper and lower central incisors (U1 and L1).

Results

Several reproducibility assessments for the TCA measurements yielded good results, including objectivity at 1.26 ± 0.81° (U1) or 1.41 ± 1.18° (L1), examiner reliability at 1.30 ± 0.97° (U1) or 1.25 ± 0.82° (L1), and method reliability at 1.80 ± 1.13° (U1) or 1.53 ± 1.07° (L1). The statistical measures revealed a high degree of interindividual variability. With bracket placement 4.5 mm (U1) or 4.0 mm (L1) above the incisal edge, the differences between the maximum and minimum TCA values were similarly large in both jaws (21.0° for U1 or 20.0° for L1), given mean TCA values of 24.6 ± 3.6° (U1) or 22.9 ± 4.3° (L1). Moving the bracket placement from 3.5 to 5.5 mm (U1) or from 3.0 to 5.0 mm (L1) changed the mean TCA values by 4.5° (U1) or 3.2° (L1).

Conclusions

The TCA is a suitable cephalometric parameter to identify differences related to tooth morphology and bracket placement. Given its high interindividual variability, the fixed torque value of a specific bracket system should not be expected to produce the same incisor inclinations across patients.

Zusammenfassung

Zielsetzung

Gegenstand der Untersuchung war die Ermittlung der Reproduzierbarkeit (Objektivität, Reliabilität) des TCA („torque coordination angle“) und seiner statistischen Kennwerte.

Methoden

Integriert in die Studie wurden insgesamt 107 FRS(Fernröntgenseiten)-Abschlussaufnahmen und die dazu gehörigen Abschlussmodelle von Patienten, deren Behandlungsergebnisse einen hohen qualitativen Standard aufwiesen (PAR[Peer Assessment Rating]-Index ≤3, u. a.). An diesem Material wurde der TCA bestimmt. Dieser Winkel ist ein Parameter, mit dem sich morphologische und klebepunktbedingte Unterschiede zwischen einer torquerelevanten Bezugsebene (Bracketbasis) und den Zahnlängsachsen oberer (U1) und unterer (L1) mittlerer Incisivi bestimmen lassen.

Ergebnisse

Die Verlässlichkeit des TCA wurde durch verschiedene Analysen bestätigt. Objektivität: MW 1,26 ± 0,81° (U1), MW 1,41 ± 1,18° (L1); Untersucherreliabilität: MW 1,30 ± 0,97° (U1), MW 1,25 ± 0,82° (L1); Verfahrensreliabilität: MW 1,80 ± 1,13° (U1), MW 1,53 ± 1,07° (L1). Die statistischen Kennwerte zeigten eine hohe Variabilität im interindividuellen Vergleich von ∆max 21° (U1), ∆max 20° (L1). Die Mittelwerte für die Klebepositionen 4,5 mm (U1) bzw. 4 mm (L1) betrugen 24,6 ± 3,6° bzw. 22,9 ± 4,3°. Veränderungen der Höhe des Klebepunktes zwischen 3,5 und 5,5 mm (U1) bzw. zwischen 3 und 5 mm (L1) resultierten in mittleren Veränderungen des TCA von 4,5° (U1) bzw. von 3,2° (L1).

Schlussfolgerungen

Der TCA ist ein Parameter, mit dessen Hilfe sich die morphologischen und klebepunktbedingten Unterschiede von oberen und unteren mittleren Incisivi im FRS-Bild erfassen lassen. Aufgrund seiner großen Variabilität im interindividuellen Vergleich kann angenommen werden, dass der fixe Torquewert eines einzelnen Bracketsystems nicht geeignet ist, patientenübergreifend eine identische Schneidezahninklination zu erreichen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6
Fig. 7 Abb. 7
Fig. 8 Abb. 8
Fig. 9 Abb. 9
Fig. 10 Abb. 10

Similar content being viewed by others

References

  1. Albarakati SF, Kula KS, Ghoneima AA (2012) The reliability and reproducibility of cephalometric measurements: a comparison of conventional and digital methods. Dentomaxillofac Radiol 41:11–17

    Article  PubMed  PubMed Central  Google Scholar 

  2. Andrews LF (1976) In: Andrews LF (ed) Die Straight-Wire-Apparatur. “A”-Company, München, p 4, 23, 25, 26, 67 (Deutsche Übersetzung der Originalarbeit “The Straight-Wire-Appliance” 1975,)

    Google Scholar 

  3. Baumrind S, Frantz RC (1971) The reliability of head film landmarks. 1. Landmark identification. Am J Orthod 60:111–127

    Article  PubMed  Google Scholar 

  4. Baumrind S, Frantz RC (1971) The reliability of head film measurements. 2. Conventional angular and linear measures. Am J Orthod 60:505–517

    Article  PubMed  Google Scholar 

  5. Bryant RM, Sadowsky PL, Dent M, Hazelrig JB (1984) Variability in three morphologic features of the permanent maxillary central incisor. Am J Orthod Dentofacial Orthop 86:25–32

    Article  Google Scholar 

  6. Celik E, Polat-Ozsoy O, Toygar Memikoglu TU (2009) Comparison of cephalometric measurements with digital versus conventional cephalometric analysis. Eur J Orthod 31:241–246

    Article  PubMed  Google Scholar 

  7. Chachada AD, Kamble RH (2014) Influence of morphology of maxillary central incisor on expression of torque using 2D surface scanning and confirmation with 3D photographic model: an in vitro study. World J Dent 5:21–27

    Article  Google Scholar 

  8. Chen YJ, Chen SK, Chang HF et al (2000) Comparison of landmark identification in traditional versus computer-aided digital cephalometry. Angle Orthod 70:387–392

    PubMed  Google Scholar 

  9. Fassl H (2012) In: Fassl H (ed) Einführung in die Medizinische Statistik. Johann Ambrosius Barth Verlag, Hüthig GmbH, Berlin, pp 22–26

    Google Scholar 

  10. Geelen W, Wenzel A, Gotfredsen E, Kruger M, Hansson LG (1998) Reproducibility of cephalometric landmarks on conventional films, hardcopy and monitor-displayed images obtained by the phosphor technique. Eur J Orthod 20:331–340

    Article  PubMed  Google Scholar 

  11. Germane N, Bentley BE, Isaacson RJ (1989) Three biologic variables modifying faciolingual tooth angulation by straight-wire appliances. Am J Orthod Dentofacial Orthop 96:312–319

    Article  PubMed  Google Scholar 

  12. Ghoneima A, Albarakati S, Baysal A, Uysal T, Kula K (2012) Measurements from conventional, digital and CT-derived cephalograms: a comparative study. Aust Orthod J 28:232–239

    PubMed  Google Scholar 

  13. Hagemann K, Vollmer D, Niegel T, Ehmer U, Reuter I (2000) Prospective study on the reproducibility of cephalometric landmarks on conventional and digital lateral headfilms. J Orofac Orthop 61:91–99

    Article  PubMed  Google Scholar 

  14. Hagg U, Cooke MS, Chan TC, Tng TT, Lau PY (1998) The reproducibility of cephalometric landmarks: an experimental study on skulls. Aust Orthod J 15:177–185

    PubMed  Google Scholar 

  15. Harries EF, Hassankiadeh S, Harries JT (1993) Maxillary incisor crown-root relationships in different angle malocclusions. Am J Orthod Dentofacial Orthop 103:48–53

    Article  Google Scholar 

  16. Haynes S, Chau MN (1993) Inter- and intra-observer identification of landmarks used in the Delaire analysis. Eur J Orthod 15:79–84

    Article  PubMed  Google Scholar 

  17. Houston WJ (1983) The analysis of errors in orthodontic measurements. Am J Orthod 83:382–390

    Article  PubMed  Google Scholar 

  18. Hu XQ, Kong WD, Cai B, Chen MY (2009) Evaluation of the effect of maxillary anterior teeth morphology on torque using cone beam dental computed tomography. Hua Xi Kou Qiang Yi Xue Za Zhi 27:297–300

    PubMed  Google Scholar 

  19. Israr J, Bhutta N, Chatha MR (2016) Comparison of Collum angle of maxillary central incisors in class II Div 1 & 2 malocclusions. Pak Oral Dent J 36:91–93

    Google Scholar 

  20. Krey K‑F (2010) Untersuchungen zur Morphologie von dentofazialen und skelettalen Strukturen Erwachsener mit Methoden der geometrischen Morphometrie. Leipzig, Univ., Habil.-Schr.

  21. Loenen M van, Degrieck J, De Pauw G, Dermau L (2005) Anterior tooth morphology and its effect on torque. Eur J Orthod 27:258–262

    Article  PubMed  Google Scholar 

  22. McLaughlin RP, Bennett JC, Trevisi HJ (2001) Bracket positioning and case set-up. In: McLaughlin RP, Bennett JC, Trevisi HJ, Parkinson M (eds) Systemized orthodontic treatment mechanics. Mosby International, St. Louis, pp 8–12, 55–69

    Google Scholar 

  23. Midtgard J, Bjork G, Linder-Aronson S (1974) Reproducibility of cephalometric landmarks and errors of measurements of cephalometric cranial distances. Angle Orthod 44:56–61

    PubMed  Google Scholar 

  24. Nimkarn Y, Miles PG (1995) Reliability of computer-generated cephalometrics. Int J Adult Orthodon Orthognath Surg 10:43–52

    PubMed  Google Scholar 

  25. Normenausschuss Dental (NADENT) im DIN (2010) Zahnheilkunde – Brackets und Röhrchen für die Kieferorthopädie. Beuth-Verlag, Berlin (Deutsche Fassung)

    Google Scholar 

  26. Ongkosuwito EM, Katsaros C, van’t Hof MA, Bodegom JC, Kuijpers-Jagtman AM (2002) The reproducibility of cephalometric measurements: a comparison of analogue and digital methods. Eur J Orthod 24:655–665

    Article  PubMed  Google Scholar 

  27. Papageorgiou SN, Sifakakis I, Keilig L, Patcas R, Affolter S, Eliades T, Bourauel C (2016) Torque differences according to tooth morphology and bracket placement: a finite element study. Eur J Orthod 18:6. https://doi.org/10.1186/s40510-017-0161-5

    Google Scholar 

  28. Polat-Ozsoy O, Gokcelik A, Memikoglu TU (2009) Differences in cephalometric measurements: a comparison of digital versus hand-tracing methods. Eur J Orthod 31:254–259

    Article  PubMed  Google Scholar 

  29. Sardarian A, Danaei SM, Shahidi S, Boushehri SG, Geramy A (2014) The effect of vertical bracket positioning on torque and the resultant stress in the periodontal ligament—a finite element study. Prog Orthod 15:50–59

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shen Y‑W, Hsu J‑T, Wang Y‑H, Huang H‑L, Fuh L‑J (2012) The Collum angle of the maxillary central incisors in patients with different types of malocclusion. J Dent Sci 7:72–76

    Article  Google Scholar 

  31. Taylor RM (1969) Variation in form of human teeth. An anthropologic and forensic study of maxillary incisors. J Dent Res 48:5–16

    Article  PubMed  Google Scholar 

  32. Woelfel JB (1990) In: Woelfel JB (ed) Dental anatomy: its relevance to dentistry, 4th edn. Verlag Lea und Febiger, Philadelphia, p 54–55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Zimmer.

Ethics declarations

Conflict of interest

H. Sino, B. Zimmer, I. Schelper, S. Schenk-Kazan and F. Streibelt declare that they have no competing interests.

Ethical standards

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethical standards and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sino, H., Zimmer, B., Schelper, I. et al. Coordinating bracket torque and incisor inclination. J Orofac Orthop 79, 235–243 (2018). https://doi.org/10.1007/s00056-018-0130-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-018-0130-8

Keywords

Schlüsselwörter

Navigation