Skip to main content
Log in

A comparison of different sealants preventing demineralization around brackets

Ein Vergleich unterschiedlicher Versiegler zur Prävention von Demineralisierung im Bracketumfeld

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Aim

Aim of the study was to compare how six different sealants resisted thermal, mechanical, and chemical loading in vitro.

Materials and methods

In all, 120 extracted human, nondecayed molars were divided into six groups (20 samples each) and embedded in resin blocks. The buccal surfaces of the tooth samples were polished and divided into three areas. Area A contained the product to be analyzed, area B was covered with colorless nail varnish (negative control), and area C remained untreated (positive control). The samples were stored in 0.1% thymol solution. To simulate a 3-month thermomechanical load, the samples were subjected to thermal cycling and a cleaning device. After 7 days incubation in a ten Cate demineralization solution (pH value: 4.6), the samples were dissected using a band saw and the lesion depths and demineralization areas were evaluated and compared microscopically.

Results

The tooth surfaces treated with PRO SEAL® showed no demineralization. Mean lesion depths of 108.1, 119.9, 154.9, 149.2, and 184.5 μm were found with Alpha-Glaze®, Seal&Protect®, Tiefenfluorid®, Protecto®, and Fluor Protector, respectively. There was a significant difference between PRO SEAL® and the other products (p > 0.0001). There was no significant difference between the other products.

Conclusion

PRO SEAL® resisted thermal, mechanical, and chemical loading in vitro, providing protection against white spot lesions.

Zusammenfassung

Ziel

Verglichen werden sollten sechs unterschiedliche Versiegler in Hinblick auf die Widerstandsfähigkeit gegenüber thermischen, mechanischen und chemischen Einflüssen in vitro.

Material und Methoden

Insgesamt 120 extrahierte humane, kariesfreie Molaren wurden 6 Gruppen à 20 zugeordnet und in Kunststoff eingebettet. Die Bukkalflächen der Zahnproben wurden poliert und in drei Bereiche eingeteilt: Bereich A enthielt das zu analysierende Produkt, Bereich B war mit farblosem Nagellack überzogen (Negativkontrolle) und Bereich C blieb unbehandelt (Positivkontrolle). Die Proben wurden in einer Thymollösung (0,1%) aufbewahrt. Zur Simulation einer 3‑monatigen thermomechanischen Belastung wurden die Proben Temperaturschwankungen und einer Reinigungsprozedur unterzogen. Im Anschluss an eine 7‑tägige Inkubationszeit in einer Demineralisierungslösung (ten Cate, pH-Wert 4,6) wurden die Proben mit einer Bandsäge zerteilt. Die demineralisierten Bereiche wurden evaluiert und mittels Lichtmikroskopie miteinander verglichen.

Ergebnisse

An den mit PRO SEAL® behandelten Zahnoberflächen zeigte sich keine Demineralisierung. Die Tiefe der Läsionen in den mit Alpha-Glaze®, Seal&Protect®, Tiefenfluorid®, Protecto® bzw. Fluor Protector behandelten Flächen betrug im Mittel 108,1, 119,9, 154,9, 149,2 und 184,5 μm. Ein statistisch signifikanter Unterschied (p > 0,0001) zeigte sich zwischen PRO SEAL® und allen anderen Produkten, keine signifikanten Unterschiede ergaben sich dagegen zwischen den anderen Produkten.

Schlussfolgerung

Der Versiegler PRO SEAL® zeigte in vitro Widerstandsfähigkeit gegenüber thermischen, mechanischen und chemischen Einflussfaktoren und schützte damit vor White-Spot-Läsionen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3

Similar content being viewed by others

References

  1. Arnold M, Trost G (1972) Dependence of the brushing effect on different forms of the toothbrush head. Dtsch Stomatol 22:46–53

    PubMed  Google Scholar 

  2. Brown W, Gregory T, Chow L (1977) Effects of fluoride on enamel solubility and cariostasis. Caries Res 11:118–141

    Article  PubMed  Google Scholar 

  3. Bruyn H de, Buskes H (1988) Caries preventive effectiveness of fluor protector and fluoride lacquer, duraphat under very cariogenic conditions. Oralprophylaxe 10:61–67

    PubMed  Google Scholar 

  4. Buchalla W, Lennon AM, Trage K et al (2007) Enamel fluoride uptake following fluoride application and fluoride precipitation. Schweiz Monatsschr Zahnmed 117:118–122

    PubMed  Google Scholar 

  5. Buren JL, Staley RN, Wefel J et al (2008) Inhibition of enamel demineralization by an enamel sealant, pro seal: an in-vitro study. Am J Orthod Dentofacial Orthop 133(Suppl 4):S 88–S94

    Article  Google Scholar 

  6. Cain K, Hicks J, English J et al (2006) In vitro enamel caries formation and orthodontic bonding agents. Am J Dent 19:187–192

    PubMed  Google Scholar 

  7. Cate JM ten, Dundon KA, Vernon PG et al (1996) Preparation and measurement of artificial enamel lesions, a four-laboratory ring test. Caries Res 30:400–407

    Article  PubMed  Google Scholar 

  8. Ceen RF, Gwinnett AJ (1980) Microscopic evaluation of the thickness of sealants used in orthodontic bonding. Am J Orthod 78:623–629

    Article  PubMed  Google Scholar 

  9. Dahlberg G (1940) Statistical methods for medical and biological students. Interscience Publications, New York

    Google Scholar 

  10. Demito CF, Vivaldi-Rodrigues G, Ramos AL et al (2004) The efficacy of a fluoride varnish in reducing enamel demineralization adjacent to orthodontic brackets: an in vitro study. Orthod Craniofac Res 7:205–210

    Article  PubMed  Google Scholar 

  11. Dyer D, Addy M, Newcombe RG (2000) Studies in vitro of abrasion by different manual toothbrush heads and a standard toothpaste. J Clin Periodontol 27:99–103

    Article  PubMed  Google Scholar 

  12. Engel S, Jost-Brinkmann P‑G, Spors CK et al (2009) Abrasive effect of air-powder polishing on smoothsurface sealants. J Orofac Orthop 70:363–370

    Article  PubMed  Google Scholar 

  13. Ferracane JL (1994) Elution of leachable components from composites. J Oral Rehabil 21:441–452

    Article  PubMed  Google Scholar 

  14. Gorelick L, Geiger AM, Gwinnett AJ (1982) Incidence of white spot formation after bonding and banding. Am J Orthod 81:93–98

    Article  PubMed  Google Scholar 

  15. Hu W, Featherstone JD (2005) Prevention of enamel demineralization: an in-vitro study using light-cured filled sealant. Am J Orthod Dentofacial Orthop 128:592–600

    Article  PubMed  Google Scholar 

  16. Ingram GS, Silverstone LM (1981) A chemical and histological study of artificial caries in human dental enamel in vitro. Caries Res 15:393–398

    Article  PubMed  Google Scholar 

  17. Linden RP van der, Dermaut LR (1998) White spot formation under orthodontic bands cemented with glass ionomer with or without fluor protector. Eur J Orthod 20:219–224

    Article  PubMed  Google Scholar 

  18. Lopatiene K, Borisovaite M, Lapenaite E (2016) Prevention and treatment of white spot lesions during andafter treatment with fixed orthodontic appliances: a systematic literature review. J Oral Maxillofac Res 7:e1

    Article  PubMed  PubMed Central  Google Scholar 

  19. Paschos E, Okuka S, Ilie N et al (2006) Investigation of shear-peel bond strength of orthodontic brackets on enamel after using pro seal. J Orofac Orthop 67:196–206

    Article  PubMed  Google Scholar 

  20. Paschos E, Kleinschrodt T, Clementino-Luedemann T et al (2009) Effect of different bonding agents on prevention of enamel demineralization around orthodontic brackets. Am J Orthod Dentofacial Orthop 135:603–612

    Article  PubMed  Google Scholar 

  21. Perrini F, Lombardo L, Arreghini A et al (2016) Caries prevention during orthodontic treatment: in-vivo assessment of high-fluoride varnish to prevent white spot lesions. Am J Orthod Dentofacial Orthop 149:238–243

    Article  PubMed  Google Scholar 

  22. Pinar Erdem A, Sepet E, Kulekci G et al (2012) Effects of two fluoride varnishes and one fluoride/chlorhexidine varnish on streptococcus mutans and streptococcus sobrinus biofilm formation in vitro. Int J Med Sci 9:129–136

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pratt KC, Hicks J, English JD et al (2010) Fluoride-releasing orthodontic adhesives and topical fluoride effect on enamel caries formation: an in vitro study. Am J Dent 23:179–184

    PubMed  Google Scholar 

  24. Rosenbloom RG, Tinanoff N (1991) Salivary Streptococcus mutans levels in patients before, during and after orthodontic treatment. Am J Orthod Dentofacial Orthop 100:35–37

    Article  PubMed  Google Scholar 

  25. Sachs L (2004) Angewandte Statistik – Anwendung statistischer Methoden, 11th edn. Springer, Berlin, Heidelberg, New York, pp 1–177

    Book  Google Scholar 

  26. Schlagenhauf U, Tobien P, Engelfried P (1989) Effects of orthodontic treatment on individual caries risk parameters. Dtsch Zahnarztl Z 44:758–760

    PubMed  Google Scholar 

  27. Soliman MM, Bishara SE, Wefel J et al (2006) Fluoride release rate from an orthodontic sealant and its clinical implications. Angle Orthod 76:282–288

    PubMed  Google Scholar 

  28. Srivastava K, Tikku T, Khanna R et al (2013) Risk factors and management of white spot lesions in orthodontics. J Orthod Sci 2:43–49

    Article  PubMed  PubMed Central  Google Scholar 

  29. Stecksén-Blicks C, Renfors G, Oscarson ND et al (2007) Caries-preventive effectiveness of a fluoride varnish: a randomized controlled trial in adolescents with fixed orthodontic appliances. Caries Res 41:455–459

    Article  PubMed  Google Scholar 

  30. Tanna N, Kao E, Gladwin M et al (2009) Effects of sealant and self-etching primer on enamel decalcification. Part I: an in-vitro study. Am J Orthod Dentofacial Orthop 135:199–205

    Article  PubMed  Google Scholar 

  31. Tran P, Hamood A, Mosley T et al (2013) Organo-selenium-containing dental sealant inhibits bacterial biofilm. J Dent Res 92:461–466

    Article  PubMed  PubMed Central  Google Scholar 

  32. Visel D, Jäcker T, Jost-Brinkmann P‑G, Präger T‑M (2014) Demineralization adjacent to orthodontic brackets after application of conventional and self-etching primer systems. J Orofac Orthop 75:358–373

    Article  PubMed  Google Scholar 

  33. Wicht MJ, Haak R, Lummert D et al (2003) Treatment of root caries lesions with chlorhexidine-containing varnishes and dentin sealants. Am J Dent 16:25 A–30 A

    PubMed  Google Scholar 

  34. Øgaard B, Rølla G, Helgeland K (1984) Fluoride retention in sound and demineralized enamel in vivo after treatment with a fluoride varnish (Duraphat). Scand J Dent Res 92:190–197

    PubMed  Google Scholar 

  35. Øgaard B, Larsson E, Henriksson T et al (2001) Effects of combined application of antimicrobial and fluoride varnishes in orthodontic patients. Am J Orthod Dentofacial Orthop 120:28–35

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Louise Coordes.

Ethics declarations

Conflict of interest

S.L. Coordes, P.-G. Jost-Brinkmann, T.M. Präger, T. Bartzela, D. Visel, T. Jäcker and R. Müller-Hartwich declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coordes, S.L., Jost-Brinkmann, PG., Präger, T.M. et al. A comparison of different sealants preventing demineralization around brackets. J Orofac Orthop 79, 49–56 (2018). https://doi.org/10.1007/s00056-017-0116-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-017-0116-y

Keywords

Schlüsselwörter

Navigation